DOI QR코드

DOI QR Code

Analyse of the behavior of functionally graded beams based on neutral surface position

  • 투고 : 2015.02.16
  • 심사 : 2015.05.17
  • 발행 : 2015.08.25

초록

In this paper, a simple n-order refined theory based on neutral surface position is developed for bending and frees vibration analyses of functionally graded beams. The present theory is variationally consistent, uses the n-order polynomial term to represent the displacement field, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The governing equations are derived by employing the Hamilton's principle and the physical neutral surface concept. The accuracy of the present solutions is verified by comparing the obtained results with available published ones.

키워드

참고문헌

  1. Allahverdizadeh, A., Eshraghi, I., Mahjoob, M.J. and Nasrollahzadeh, N. (2014), "Nonlinear vibration analysis of FGER sandwich beams", Int. J. Mech. Sci., 78, 167-176. https://doi.org/10.1016/j.ijmecsci.2013.11.012
  2. Benatta, M.A., Tounsi, A., Mechab, I. and Bachir Bouiadjra, M. (2009), "Mathematical solution for bending of short hybrid composite beams with variable fibers spacing", Appl. Math. Comput., 212(2), 337-348. https://doi.org/10.1016/j.amc.2009.02.030
  3. Bachir Bouiadjra, M., Houari, M.S.A. and Tounsi, A. (2012), "Thermal buckling of functionally graded plates according to a four-variable refined plate theory", J. Thermal Stress., 35, 677-694. https://doi.org/10.1080/01495739.2012.688665
  4. Bourada, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2012), "A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates", J. Sandwich Struct. Mater., 14, 5-33. https://doi.org/10.1177/1099636211426386
  5. Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Adda Bedia, E.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467
  6. Fekrar, A., El Meiche, N., Bessaim, A., Tounsi, A. and Adda Bedia, E.A. (2012), "Buckling analysis of functionally graded hybrid composite plates using a new four variable refined plate theory", Steel Compos. Struct., 13(1), 91-107. https://doi.org/10.12989/scs.2012.13.1.091
  7. Ghiasian, S.E., Kiani, Y. and Eslami, M.R., (2013), "Dynamic buckling of suddenly heated or compressed FGM beams resting on nonlinear elastic foundation", Compos. Struct., 106, 225-234. https://doi.org/10.1016/j.compstruct.2013.06.001
  8. Hadji, L., Daouadji, T.H., Tounsi, A. and Bedia, E.A. (2014), "A higher order shear deformation theory for static and free vibration of FGM beam", Steel Compos. Struct., 16(5), 507-519. https://doi.org/10.12989/scs.2014.16.5.507
  9. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., ASCE, 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  10. Klouche Djedid, I., Benachour, A., Houari, M.S.A., Tounsi, A. and Ameur, M. (2014), "A n-order four variable refined theory for bending and free vibration of functionally graded plates" Steel Compos. Struct., 17(1), 21-46. https://doi.org/10.12989/scs.2014.17.1.021
  11. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B, 28, 1-4.
  12. Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318, 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
  13. Li, S.R., Cao, D.F. and Wan, Z.Q. (2013), "Bending solutions of FGM Timoshenko beams from those of the homogenous Euler-Bernoulli beams", Appl. Math. Model., 37, 7077-7085. https://doi.org/10.1016/j.apm.2013.02.047
  14. Ould Larbi, L., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Bas. Des. Struct. Mach., 41, 421-433. https://doi.org/10.1080/15397734.2013.763713
  15. Saidi, A.R. and Jomehzadeh, E. (2009), "On analytical approach for the bending/stretching of linearly elastic functionally graded rectangular plates with two opposite edges simply supported", Proc. IMechE, Part C: J. Mech. Eng. Sci., 223, 2009-2016. https://doi.org/10.1243/09544062JMES1431
  16. Sallai, B.O., Tounsi, A., Mechab, I., Bachir, B.M., Meradjah, M. and Adda Bedia, E.A. (2009), "A theoretical analysis of flexional bending of Al/Al2O3 S-FGM thick beams", Comput. Mater. Sci., 44(4), 1344-1350. https://doi.org/10.1016/j.commatsci.2008.09.001
  17. Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Tech., 61, 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0
  18. Simsek, M. (2010a), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nucl. Eng. Des., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013
  19. Simsek, M. (2010b), "Vibration analysis of a functionally graded beam under a moving mass by using different beam theories", Compos. Struct., 92(4), 904-917. https://doi.org/10.1016/j.compstruct.2009.09.030
  20. Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
  21. Suresh, S. and Mortensen, A. (1998), Fundamentals of Functionally Graded Materials, IOM Communications Ltd., London.
  22. Thai, H.T. and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62, 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014
  23. Yaghoobi, H. and Yaghoobi, P. (2013), "Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: an analytical approach", Meccanica, 48, 2019-2039. https://doi.org/10.1007/s11012-013-9720-0
  24. Zhang, D.G. and Zhou, Y.H. (2008), "A theoretical analysis of FGM thin plates based on physical neutral surface", Computat. Mater. Sci., 44, 716-720.

피인용 문헌

  1. Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
  2. Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.755
  3. Thermal Effects on the Vibration of Functionally Graded Deep Beams with Porosity vol.09, pp.05, 2017, https://doi.org/10.1142/S1758825117500764
  4. Forced vibration analysis of functionally graded porous deep beams vol.186, 2018, https://doi.org/10.1016/j.compstruct.2017.12.013
  5. A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations vol.11, pp.2, 2016, https://doi.org/10.12989/gae.2016.11.2.289
  6. Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.091
  7. Modeling and analysis of functionally graded sandwich beams: A review pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1447178
  8. A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation vol.12, pp.1, 2015, https://doi.org/10.12989/gae.2017.12.1.009