DOI QR코드

DOI QR Code

Thermal Durability of Neon Transformer with Diluent Mixing Ratio

증량제 혼합비율에 따른 네온변압기의 열내구성 평가

  • Hong, In Kwon (Department of Chemical Engineering, Dankook University) ;
  • Jeon, Gil Song (Department of Chemical Engineering, Dankook University) ;
  • Lee, Seung Bum (Department of Chemical Engineering, Dankook University)
  • Received : 2015.04.17
  • Accepted : 2015.05.18
  • Published : 2015.08.10

Abstract

The physical properties, such as the heat resistance and thermal durability of the temperature difference fatigue resistance should be excellent when preparing an epoxy type resin for a neon transformer housing. In this study, 50 wt% of $SiO_2$ and silica were selected as a reinforcement and diluent filler for epoxy type resins, respectively. Thermal conductivity and thermal stability were measured as the mixing ratio varied upon the particle sizes. The optimal amount of the mixed silica was 50 wt%. Thermal stability was improved with increasing the amount of larger silica particles. The optimal mixing ratio of differently sized silica particles was 28/3 : 14/18 : 8/10 mesh = 1 : 1 : 1. From these results, it is thought that neon transformer is producible which has excellent thermal durability.

네온변압기용 에폭시계 수지는 변압기로 완성되었을 경우 내열성 및 온도차 피로극복 등 열내구성이 우수하여야 한다. 따라서 본 연구에서는 에폭시계 수지에 보강제로 이산화규소를 첨가하고 증량제로 silica를 선정하여 입자크기별 혼합비에 따른 열전도도와 열안정성을 측정하였다. 혼합 silica의 최적 첨가량은 50 wt%이었으며, 혼합 silica 중 입자크기가 큰 규사의 첨가량이 증가함에 따라 열안정성이 우수하였다. 혼합 silica의 입자크기별 최적 혼합비는 (28/35 : 14/18 : 8/10 mesh = 1 : 1 : 1)이었으며, 이로부터 열내구성이 향상된 네온변압기를 제작할 수 있었다.

Keywords

References

  1. C. A. May, Epoxy Resins Chemistry and Technology, Marcel Dekker Inc., NY (1988).
  2. W. Yasuo, T. Takeshj, H. Takashi, and H. Takashi, Development of outdoor epoxy resin molded apparatus for distribution systems, IEEE Trans. Power Deliv., 5(1), 204-211 (1990).
  3. L. W. Pierce, An investigation of the temperature distribution in cast-resin transformer windings, IEEE Trans. Power Deliv., 7(2), 920-926 (1992). https://doi.org/10.1109/61.127099
  4. R. S. Bauer, Epoxy Resin Chemistry, American Chemical Society, Washington D. C. (1979).
  5. S. J. Park, F. L. Jin, and J. S. Shin, Physicochemical and mechanical interfacial properties of trifluorometryl groups containing epoxy resin cured with amine, Mater. Sci. Eng: A, 390, 240-245 (2005). https://doi.org/10.1016/j.msea.2004.08.022
  6. S. G. Hong and J. S. Tsai, The effect of metal surfaces on the adsorption and degradation behavior of an epoxy/amidoamine system, Macromol. Mater. Eng., 276, 59-65 (2000).
  7. S. J. Park and F. L. Jin, Thermal stabilities and dynamic mechanical properties of sulfone-containing epoxy resin cured with anhydride, Polym. Degrad. Stab., 86, 515-520 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.06.003
  8. J. Froflich, D. Golombowski, R. Thomann, and R. Mulhaupt, Synthesis and characterisation of anhydride-cured epoxy nanocomposites containing layered silicates modified with phenolic alkylimidazolineamide cations, Macromol. Mater. Eng., 289(1), 13-19 (2004). https://doi.org/10.1002/mame.200300204
  9. R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot, Transport Phenomena, 2nd ed., Wiley (2002).
  10. S. J. Park, F. L. Jin, and J. R. Lee, Synthesis and Thermal Properties of Epoxidized Vegetable Oil, Macromol. Rapid Commun., 25(6), 724-727 (2004). https://doi.org/10.1002/marc.200300191
  11. C. H. Lee, Handbook of Epoxy formulation, Kyowoosa, Seoul (2009).
  12. S. B. Lee and I. K. Hong, Thermal deformation of epoxy type resin for neon transformer housing, J. Ind. Eng. Chem., 17(3), 404-409 (2011). https://doi.org/10.1016/j.jiec.2010.11.001
  13. S. B. Lee, H. J. Lee, and I. K. Hong, Diluent filler particle size effect for thermal stability of epoxy type resin, J. Ind. Eng. Chem., 18(2), 635-641 (2012). https://doi.org/10.1016/j.jiec.2011.11.030
  14. W. L. McCabe, J. C. Smith, and P. Harriott, Unit Operations of Chemical Engineering, 7th ed., 251-258, McGraw-Hill (2005).
  15. S. B. Lee, Y. S. Yoon, and I. K. Hong, Selection of thinner for epoxy type resins for neon transformer housing, J. Ind. Eng. Chem., 18(5), 1997-2003 (2012). https://doi.org/10.1016/j.jiec.2012.05.018