DOI QR코드

DOI QR Code

Gas Permeation Properties of PTMSP-ZIF Composite Membrane

PTMSP-ZIF 복합막의 기체투과 특성

  • Received : 2015.03.20
  • Accepted : 2015.06.30
  • Published : 2015.08.10

Abstract

PTMSP-ZIF composite membranes were prepared by the addition of zeolitic imidazolate framework (ZIF-8) into poly (1-trimethylsilyl-1-propyne) (PTMSP) having high gas permeability to improve trade-off relationship of the polymer membrane. PTMSP-ZIF composite membranes were prepared with different amounts of ZIF-8; 0, 5, 10, 20, 30 and 40 wt%. Gas permeation properties for $H_2$, $N_2$, $CO_2$, and $CH_4$ were investigated by increasing the amount of ZIF-8 in the PTMSP. The gas permeability of PTMSP-ZIF composite membranes within 5~30 wt% of ZIF-8 contents increased as ZIF-8 contents went up and decreased thereafter. The gas permeability for $CO_2$ showed the maximum value of 76080 barrer at 30 wt% of ZIF-8 content and PTMSP-ZIF composite membrane containing 20 wt% of ZIF-8 content had the highest selectivity ($CO_2/N_2$) with the value of 8.2. The selectivity ($H_2/N_2$) and selectivity ($CO_2/CH_4$) were almost the same as PTMSP in the range 10~40 wt% of the ZIF-8. Overall, PTMSP-ZIF composite membranes resulted in maintained selectivity and increased permeability compared to those of PTMSP membranes.

기체 투과도가 우수한 PTMSP [Poly(1-trimethylsilyl-1-propyne)] 고분자막의 양립현상(trade-off relationship)을 개선하기 위해서 ZIF-8 (zeolitic imidazolate framework)을 첨가하여 PTMSP-ZIF 복합막을 제조하였다. PTMSP-ZIF 복합막은 PTMSP에 ZIF-8의 함량을 0, 5, 10, 20, 30, 40 wt%로 하여 제조하였고, PTMSP-ZIF 복합막의 ZIF-8 함량 변화에 따른 $H_2$, $N_2$, $CO_2$, $CH_4$의 기체투과 특성을 알아보았다. 기체투과 실험에서 ZIF-8의 함량 5~30 wt%까지는 ZIF 함량이 증가함에 따라 기체투과도는 증가하였고, 그 이후에는 감소하였다. PTMSP-ZIF 30 wt% 복합막에서 $CO_2$의 기체투과도가 76080 barrer로 가장 큰 기체투과도를 보였고, PTMSP-ZIF 20 wt% 복합막에서 선택도($CO_2/N_2$)는 8.2로 가장 높은 값을 보였다. 선택도($H_2/N_2$)와 선택도($CO_2/CH_4$)는 ZIF-8 함량 10~40 wt% 범위에서 PTMSP 단일막과 거의 비슷한 값을 보였다. 전체적으로 PTMSP-ZIF 복합막들은 PTMSP 단일막보다 선택도는 감소되지 않으면서 투과도는 향상된 결과를 보였다.

Keywords

References

  1. D. Q. Vu, W. J. Koros, and S. J. Miller, Mixed matrix membranes using carbon molecular sieves. I. Preparation and experimental results, J. Membr. Sci., 211, 311-334 (2003). https://doi.org/10.1016/S0376-7388(02)00429-5
  2. T. Li, Y. Pan, K. V. Peinemann, and Z. Lai, Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers, J. Membr. Sci., 425-426, 235-242 (2013). https://doi.org/10.1016/j.memsci.2012.09.006
  3. R. D. Noble, Perspectives on mixed matrix membranes, J. Membr. Sci., 378, 393-397 (2011). https://doi.org/10.1016/j.memsci.2011.05.031
  4. C. Zhang, Y. Dai, J. R. Johnson, O. Karvan, and W. J. Koros, High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations, J. Membr. Sci., 389, 34-42 (2012). https://doi.org/10.1016/j.memsci.2011.10.003
  5. T. H. Bae, J. S. Lee, W. L. Qiu, W. J. Koros, C. W. Jones, and S. Nair, A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals, Angew. Chem. Int. Ed., 49, 9863-9866 (2010). https://doi.org/10.1002/anie.201006141
  6. A. Car, C. Stropnik, and K. V. Peinemann, Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation, Desalination, 200, 424-426 (2006). https://doi.org/10.1016/j.desal.2006.03.390
  7. K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. D. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, P. Natl. Acad. Sci. USA, 103, 10186-10191 (2006). https://doi.org/10.1073/pnas.0602439103
  8. A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O'Keeffe, and O. M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks, Accounts Chem. Res., 43, 58-67 (2010). https://doi.org/10.1021/ar900116g
  9. G. Lu and J. T. Hupp, Metal-organic frameworks as sensors: A ZIF-8 based Fabry-Perot device as a selective sensor for chemical vapors and gases, J. Am. Chem. Soc., 132, 7832-7833 (2010). https://doi.org/10.1021/ja101415b
  10. Y. Dai, J. R. Johnson, O. Karvan, D. S. Sholl, and W. J. Koros, $ Ultem^{(R)}$/ZIF-8 mixed matrix hollow fiber membranes for $CO_2/N_2$ separations, J. Membr. Sci., 401, 76-82 (2012).
  11. X, L. Liu, Y. S. Li, G. Q. Zhu, Y. J. Ban, L. Y. Xu, and W. S. Yang, An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols, Angew. Chem. Int. Ed., 50, 10636-10639 (2011). https://doi.org/10.1002/anie.201104383
  12. M. Askari and T. S. Chung, Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed membranes, J. Membr. Sci., 444, 173-183 (2013). https://doi.org/10.1016/j.memsci.2013.05.016
  13. V. Nafisi and M. B. Hagg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for $CO_2$ capture, J. Membr. Sci., 459, 244-255 (2014). https://doi.org/10.1016/j.memsci.2014.02.002
  14. N. Hara, M. Yoshimune, H. Negishi, K. Haraya, S. Hara, and T. Yamaguchi, Diffusive separation of propylene/propane with ZIF-8 membranes, J. Membr. Sci., 450, 215-223 (2014). https://doi.org/10.1016/j.memsci.2013.09.012
  15. Y. Pan, T. Li, G. Lestari, and Z. Lai, Effective separation of propylene/ propane binary mixtures by ZIF-8 membranes, J. Membr. Sci., 390-391, 93-98 (2012). https://doi.org/10.1016/j.memsci.2011.11.024
  16. A. F. Bushell, M. P. Attfield, C. R. mason, P. M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo, J. C. Jansen, M. Lanc, K. Friess, V. Shantarovich, V. Gustov, and V. Isaeva, Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8, J. Membr. Sci., 427, 48-62 (2013). https://doi.org/10.1016/j.memsci.2012.09.035
  17. K. Nagai, S. Kanehashi, S. Tabei, and T. Nakagawa, Nitrogen permeability and carbon dioxide solubility in poly(1-trimethylsilyl-1-propyne)-based binary substituted polyacetylene blends, J. Membr. Sci., 251, 101-110 (2005). https://doi.org/10.1016/j.memsci.2004.10.041
  18. T. C. Merkel, V. I. Bondar, K. Nagai, and B. D. Freeman, Sorption and transport of hydrocarbon and perfluorocarbon gases in poly(1-trimethylsilyl-1-propyne), J. Polym. Sci. Pol. Phy., 38, 273-296 (2000). https://doi.org/10.1002/(SICI)1099-0488(20000115)38:2<273::AID-POLB1>3.0.CO;2-X
  19. I. Pinnau and L. G. Toy, Transport of organic vapors through poly(1-trimethylsilyl-1-propyne), J. Membr. Sci., 116, 199-209 (1996). https://doi.org/10.1016/0376-7388(96)00041-5
  20. I. L. Borisov, A. O. Malakhov, V. S. Khotimsky, E. G. Litvinova, E. S. Finkelshtein, N. V. Ushakov, and V. V. Volkov, Novel PTMSP-based membranes containing elastomeric fillers: Enhanced 1-butanol/water pervaporation selectivity and permeability, J. Membr. Sci., 466, 322-330 (2014). https://doi.org/10.1016/j.memsci.2014.04.037
  21. S. D. Kelmana, R. D. Raharjoa, C. W. Bielawskib, and B. D. Freemana, The influence of crosslinking and fumed silica nanoparticles on mixed gas transport properties of poly[1-(trimethylsilyl)-1-propyne], Polymer, 49, 3029-3041 (2008). https://doi.org/10.1016/j.polymer.2008.03.053
  22. G. Consolatia, M. Pegorarob, F. Quassoa, and F. Severinib, Chlorinated PTMSP membranes: permeability, free volume and physical properties, Polymer, 42(3), 1265-1269 (2001). https://doi.org/10.1016/S0032-3861(00)00524-3
  23. M. Ghisellinia, M. Quinzia, M. G. Baschettia, F. Doghieria, G. Costab, and G. C. Sarti, Sorption and diffusion of vapors in PTMSP and PTMSP/PTMSE copolymers, Desalination, 149, 441-445 (2002). https://doi.org/10.1016/S0011-9164(02)00774-9
  24. S. Matteuccia, V. A. Kusumaa, D. Sandersa, S. Swinneab, and B. D. Freeman, Gas transport in $TiO_2$ nanoparticle-filled poly(1-trimethylsilyl-1-propyne), J. Membr. Sci., 307, 196-217 (2008). https://doi.org/10.1016/j.memsci.2007.09.035
  25. T. C. Merkel, Z. He, and I. Pinnau, Effect of nanoparticles on gas sorption and transport in poly(1-trimethylsilyl-1-propyne), Macromolecules, 36, 6844-6855 (2003). https://doi.org/10.1021/ma0341566
  26. K. D. Sitter, P. Winberg, J. D'Haen, C. Dotremont, R. Leysen, J. A. Martens, S. Mullens, F. H. J. Maurer, and I. F. J. Vankelecom, Silica filled poly(1-trimethylsily-1-propyne) nanocomposite membranes: Relation between the transport of gases and structural characteristics, J. Membr. Sci., 278, 83-91 (2006). https://doi.org/10.1016/j.memsci.2005.10.046
  27. S. H. Lee, M. Z. Kim, C. H. Cho, and M. H. Han, $CO_2$ permeation behavior of Pebax-2533 plate membranes prepared from 1-propanol/ n-butanol mixed solvents, Membr. J., 23(5), 367-374 (2013).
  28. Y. Hu, H. Kazemian, S. Rohani, Y. Huang, and Y. Song, In situ high pressure study of ZIF-8 by FTIR spectroscopy, Chem. Commun., 47, 12694-12696 (2011). https://doi.org/10.1039/c1cc15525c
  29. R. H. B. Bouma, A. Checchetti, G. Chidichimo, and E. Drioli, Permeation through a heterogeneous membrane: the effect of the dispersed phase, J. Membr. Sci., 128, 141-149 (1997). https://doi.org/10.1016/S0376-7388(96)00303-1
  30. R. M. Barrer, J. A. Barrie, and M. G. Rogers, Heterogeneous membranes: diffusion in filled rubber, J. Polym. Sci. Pol. Chem., 1, 2565-2586 (1963).
  31. H. Sun, L. Lu, X. Chen, and Z. Jiang, Surface-modified zeolite-filled chitosan membranes for pervaporation dehydration ethanol, Appl. Surf. Sci., 254, 5367-5374 (2008). https://doi.org/10.1016/j.apsusc.2008.02.056
  32. T. Li, Y. Pan, K. V. Peinemann, and Z. Lai, Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers, J. Membr. Sci., 425-426, 235-242 (2013). https://doi.org/10.1016/j.memsci.2012.09.006
  33. S. W. Hwang, Y. C. Chung, B. C. Chun, and S. J. Lee, Gas permeability of polyethylene films containing zeolite powder, Polymer(Korea), 28(5), 374-381 (2004).
  34. Q. Song, S. K. Nataraj, M. V. Roussenova, J. C. Tan, D. J. Hughes, W. Li, P. Bourgoin, M. A. Alam, A. K. Cheetham, S. A. Al-Muhtasebd, and E. Sivaniah, Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation, Energy Environ. Sci., 5, 8359-8369 (2012). https://doi.org/10.1039/c2ee21996d
  35. S. R. Venna and M. A. Carreon, Highly Permeable Zeolite Imidazolate Framework-8 Membranes for $CO_2/CH_4$ Separation, J. Am. Chem. Soc., 132, 76-78 (2010). https://doi.org/10.1021/ja909263x
  36. L. Hao, P. Li, T. Yang, and T. S. Chung, Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion $CO_2$ capture, J. Membr. Sci., 436, 221-231 (2013). https://doi.org/10.1016/j.memsci.2013.02.034
  37. M. Naghsh, M. Sadeghi, A. Moheb, M. P. Chenar, and M. Mohagheghian, Separation of ethylene/ethane and propylene/propane by cellulose acetate-silica nanocomposite membranes, J. Membr. Sci., 423, 97-106 (2012).
  38. L. M. Robeson, The upper bound revisited, J. Membr. Sci., 320, 390-400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030

Cited by

  1. PTMSP-GO 복합막의 기체분리 특성 vol.28, pp.2, 2015, https://doi.org/10.14579/membrane_journal.2018.28.2.105