DOI QR코드

DOI QR Code

Research Trends in Organic Light Emitting Diode

유기 전기 발광소자의 원리와 연구동향

  • Shin, Hwangyu (Department of Chemistry, Catholic University of Korea) ;
  • Kim, Seungho (Department of Chemistry, Catholic University of Korea) ;
  • Lee, Jaehyun (Department of Chemistry, Catholic University of Korea) ;
  • Lee, Hayoon (Department of Chemistry, Catholic University of Korea) ;
  • Jung, Hyocheol (Department of Chemistry, Catholic University of Korea) ;
  • Park, Jongwook (Department of Chemistry, Catholic University of Korea)
  • Received : 2015.07.09
  • Published : 2015.08.10

Abstract

Organic Light Emitting Diodes (OLEDs) have been receiving great attention in academic and industrial fields, and it is being actively applied to mobile display, as well as large area TV and next-generation flexible display due to their excellent advantages. In addition, the scope of research on OLED materials and device fabrication technology is getting expanded. This review discusses the principle and basic composition of OLED and also classifies OLED materials with different chemical structures according to their usages. Systematic classification of OLEDs by technical concept and material characteristics can help developing new emitting materials.

유기 발광 다이오드(OLED)는 학문 및 산업분야에서 많은 관심을 받아 왔으며, 소자가 갖는 우수한 장점을 바탕으로 모바일 디스플레이뿐만 아니라 대면적 TV, 차세대 굴곡형 디스플레이의 적용이 활발하게 진행되고 있다. 또한 OLED 재료의 연구와 소자제작 기술의 응용 연구 범위를 넓혀가고 있다. 본 논문에서는 이러한 OLED에 대한 기본적인 소자구성 및 원리를 설명하고, 다양한 화학구조를 응용한 OLED 재료를 각각의 용도에 맞게 분류 정리하였다. 이러한 OLED 기술의 개념과 재료의 특성을 체계적으로 분류함으로써 새로운 발광 재료를 연구하고 개발함에 있어서 많은 도움이 되리라고 생각한다.

Keywords

References

  1. Z. Shen, P. E. Burrows, V. Bulovic, S. R. Forrest, and M. E. Thompson, Three-color, tunable, organic light-emitting devices, Science, 276, 2009-2011 (1997). https://doi.org/10.1126/science.276.5321.2009
  2. S. R. Forrest, The road to high efficiency organic light emitting devices, Org. Electron., 4, 45-48 (2003). https://doi.org/10.1016/j.orgel.2003.08.014
  3. A. R. Duggal, J. J. Shiang, C. M. Heller, and D. F. Foust, Organic light-emitting devices for illumination quality white light, Appl. Phys. Lett., 80, 3470-3472 (2002). https://doi.org/10.1063/1.1478786
  4. B. W. D'Andrade and S. R. Forrest, White organic light-emitting devices for solid-state lighting, Adv. Mater., 16, 1585-1595 (2004). https://doi.org/10.1002/adma.200400684
  5. L. S. Cui, S. C. Dong, Y. Liu, Q. Li, Z. Q. Jiang, and L. S. Liao, A simple systematic design of phenylcarbazole derivatives for host materials to high-efficiency phosphorescent organic light-emitting diodes, J. Mater. Chem. C., 1, 3967-3975 (2013). https://doi.org/10.1039/c3tc30410h
  6. S. Inayama, N. Takahashi, Y. J. Pu, T. Chiba, H. Sasabe, and J. Kido, Syntheses of solution-processable arylamine derivatives and their application to organic light emitting devices, J. Photopolym. Sci. Techol., 25, 335-339 (2012). https://doi.org/10.2494/photopolymer.25.335
  7. G. Liaptsis and K. Meerholz, Crosslinkable TAPC-based hole-transport materials for solution-processed organic light-emitting diodes with reduced efficiency roll-off, Adv. Funct. Mater., 23, 359-365 (2013). https://doi.org/10.1002/adfm.201201197
  8. C. W. Lee and J. Y. Lee, Low driving voltage and high power efficiency in blue phosphorescent organic light-emitting diodes using aromatic amine derivatives with diphenylsilyl linkage, Synthetic Metals., 167, 1-4 (2013). https://doi.org/10.1016/j.synthmet.2013.02.001
  9. H. Uoyama, K. Goushi,K. Shizu, H. Nomura, and C. Adachi, Highly efficient organic light-emitting diodes from delayed fluorescence, Nature, 492, 234-240 (2012). https://doi.org/10.1038/nature11687
  10. C. J. Zheng, W. M. Zhao, Z. Q. Wang, D. Huang, J. Ye, X. M. Ou, X. H. Zhang, C. S. Lee, and S. T. Lee, Highly efficient non-doped deep-blue organic light-emitting diodes based on anthracene derivatives, J. Mater. Chem., 20, 1560-1566 (2010). https://doi.org/10.1039/b918739a
  11. K. C. Wu, P. J. Ku, C. S. Lin, H. T. Shih, F. I. Wu, M. J. Huang, J. J. Lin, I. C. Chen, and C. H. Cheng, The photophysical properties of dipyrenylbenzenes and their application as exceedingly efficient blue emitters for electroluminescent devices, Adv. Funct. Mater., 18, 67-75 (2008). https://doi.org/10.1002/adfm.200700803
  12. B. Wei, J. Z. Liu, Y. Zhang, J. H. Zhang, H. N. Peng, H. L. Fan, Y. B. He, and X. C. Gao, Stable, glassy, and versatile binaphthalene derivatives capable of efficient hole transport, hosting, and deep-blue light emission, Adv. Funct. Mater., 20, 2448-2458 (2010). https://doi.org/10.1002/adfm.201000299
  13. Y. Yang, R. T. Farley, T. T. Steckler, S. H. Eom, J. R. Reynolds, K. S. Schanze, and J. Xue, Efficient near-infrared organic light-emitting devices based on low-gap fluorescent oligomers, J. Appl. Phys., 106, 044509-1-044509-7 (2009). https://doi.org/10.1063/1.3204947
  14. J. P. Duan, P. P. Sun, and C. H. Cheng, New Iridium complexes as highly efficient orange-red emitters in organic light-emitting diodes, Adv. Mater., 15, 224-228 (2003). https://doi.org/10.1002/adma.200390051
  15. C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, K. Aznavour, R. Bau, Y. Sun, S. R. Forrest, J. Brooks, L. Michalski, and J. Brown, Highly efficient, near-infrared electro phos -phorrescence from a Pt-metalloporphyrin complex, Angew. Chem. Int. Ed., 119, 1127-1130 (2007). https://doi.org/10.1002/ange.200604240
  16. Y. Tung, L. Chen, Y. Chi, P. Chou, Y. Cheng, E. Y. Li, G. H. Lee, C. F. Shu, F. I. Wu, and A. J. Carty, Orange and red organic light-emitting devices employing neutral Ru(II) emitters: rational design and prospects for color tuning, Adv. Funct. Mater., 16, 1615-1626 (2006). https://doi.org/10.1002/adfm.200500901
  17. Y. L. Tung, P. C. Wu, C. S. Liu, Y. Chi, J. K. Yu, Y. H. Hu, P. T. Chou, S. M. Peng, G. H. Lee, Y. Tao, A. J. Carty, C. F. Shu, and F. I. Wu, Highly efficient red phosphorescent osmium(II) complexes for OLED applications, Organometallics, 23, 3745-3748 (2004). https://doi.org/10.1021/om0498246
  18. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices, Nature, 395, 151-154 (1998). https://doi.org/10.1038/25954
  19. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Applied Physics Letters., 75, 4-6 (1999). https://doi.org/10.1063/1.124258
  20. A. F. Rausch, M. E. Thompson, and H. Yersin, Matrix effects on the triplet state of the OLED emitter Ir(4,6-dFppy)2(pic) (FIrpic): investigations by high-resolution optical spectroscopy, Inorganic Chemistry, 48, 1928-1937 (2009). https://doi.org/10.1021/ic801250g
  21. S. Lee, S. O. Kim, H. Shin, H. J. Yun, K. Yang, S. K. Kwon, J. J. Kim, and Y. H. Kim, Deep-blue phosphorescence from perfluoro carbonyl-substituted Iridium complexes, J. Am. Chem. Soc., 135, 14321-14328 (2013). https://doi.org/10.1021/ja4065188
  22. S. Oyston, C. Wang, G. Hughes, A. S. Batsanov, I. F. Perepichka, M. R. Bryce, J. H. Ahn, C. Pearson, and M. C. Petty, New 2,5-diaryl-1,3,4-oxadiazole-fluorene hybrids as electron transporting materials for blended-layer organic light emitting diodes, J. Mater. Chem., 15, 194-203 (2005). https://doi.org/10.1039/b413066a
  23. M. Ichikawa, T. Kawaguchi, K. Kobayashi, T. Miki, K. Furukawa, T. Koyama, and Y. Taniguchi, Bipyridyl oxadiazoles as efficient and durable electron-transporting and hole-blocking molecular materials, J. Mater. Chem., 16, 221-225 (2006). https://doi.org/10.1039/B510720B
  24. S. J. Su, D. Tanaka, Y. J. Li, H. Sasabe, T. Takeda, and J. Kido, Novel four-pyridylbenzene-armed biphenyls as electron-transport materials for phosphorescent OLEDs, Org. Lett., 10, 941-944 (2008). https://doi.org/10.1021/ol7030872
  25. H. Sasabe, T. Chiba, S. J. Su, Y. J. Pu, K. I. Nakayama, and J. Kido, 2-Phenylpyrimidine skeleton-based electron-transport materials for extremely efficient green organic light-emitting devices, Chem. Commun., 5821-5823 (2008).
  26. D. Yokoyama, H. Sasabe, Y. Furukawa, C. Adachi, and J. Kido, Molecular stacking induced by intermolecular C-H...N hydrogen bonds leading to high carrier mobility in vacuum-deposited organic films, Adv. Funct. Mater., 21, 1375-1382 (2011). https://doi.org/10.1002/adfm.201001919

Cited by

  1. Bench‐Stable Electrophilic Indole and Pyrrole Reagents: Serendipitous Discovery and Use in C–H Functionalization vol.100, pp.12, 2015, https://doi.org/10.1002/hlca.201700221
  2. Metalated Ir(III) Complexes Based on the Luminescent Diimine Ligands: Synthesis and Photophysical Study vol.57, pp.12, 2015, https://doi.org/10.1021/acs.inorgchem.8b00390
  3. Optimization of the Emission Spectrum of Red Color in Quantum Dot-Organic Light Emitting Diodes vol.32, pp.2, 2021, https://doi.org/10.14478/ace.2020.1102