DOI QR코드

DOI QR Code

무선 USB 시스템에서 간섭 회피를 위한 채널 스케쥴링 기법

A Channel Scheduling Scheme for Interference Avoidance in Wireless USB Systems

  • Kim, Jin-Woo (Institute Research of Information Science and Engineering, Mokpo National University) ;
  • Park, Kyung Woo (Department of Computer Engineering, Mokpo National University) ;
  • Oh, Il-Whan (Department of Information & Electronics Engineering, Mokpo National University) ;
  • Kim, Kyung-Ho (Department of Information and Communication Engineering, Mokpo National University) ;
  • Lee, Seong Ro (Department of Information & Electronics Engineering, Mokpo National University)
  • 투고 : 2015.04.02
  • 심사 : 2015.07.09
  • 발행 : 2015.07.31

초록

무선 USB (universal serial bus) 시스템은 기존의 USB 기술과 WiMedia PHY/MAC 기술을 결합한 새로운 기술이다. 무선 USB 시스템은 기존의 USB와 같은 개인 영역 네트워크 뿐만 아니라 무선 개인 영역 네트워크에서도 적용될 수 있다. 다수의 무선 USB 네트워크들은 각각의 어플리케이션을 위해 독립적으로 형성되고 동작할 수 있기 때문에, 인접한 네트워크간 간섭이나 충돌이 발생할 수 있다. 이러한 문제를 해결하기 위해, 슈퍼프레임내 다른 시간 구간을 이용하는 방법을 사용할 수 있다. 하지만, 네트워크의 수가 많아지게 되면, 이용 가능한 자원이 부족하게 된다. 따라서, 본 논문은 무선 USB 시스템을 위한 간섭회피 기법을 제안한다.

Wireless universal serial bus (WUSB) is the USB technology merged with WiMedia PHY/MAC. WUSB can be applied to wireless persanal area network (WPAN) applications as well as PAN applications like wired USB. Because numerous WUSB networks operate independently for each application, data conflict can occur between adjacent networks. To avoid data conflict, the resource in a different time zone can be utilized. However, if devices in a network increase, available resources in the network decrease, and then the lack of resources necessary to provide service can occur. To solve this problem, we propose interference avoidance scheme for WUSB systems.

키워드

참고문헌

  1. WiMedia MAC Release Spec. 1.01, Distributed medium access control (MAC) for wireless networks, Dec. 15, 2006.
  2. USB Implementers Forum, Wireless universal serial bus specification, revision 1.1, Sept. 2010.
  3. C. Ma and M. Mehmet-Ali, "A performance modeling of wimedia UWB MAC," in Proc. 25th Biennial Symp. Commun., pp. 461-466, Otawa, Canada, May 2010.
  4. K. Shuaib, M. Boulmalf, F. Sallabi, and A. Lakas, "Co-existence of zigbee and WLAN, a performance study," in Proc. Wirel. Telecommun. Symp., pp. 1-6, Los Angeles, USA, Apr. 2006.
  5. E. Toscano and L. Lo Bello, "Cross-channel interference in IEEE 802.15.4 networks," in Proc. IEEE Int. Workshop Factory Commun. Syst., pp. 139-148, Dresden, Germany, May 2008.
  6. H.-B. Jung, S.-H. Kim, and D.-K. Kim, "Energy efficient relay selection in a multi-hop ad-hoc environment," J. KICS, vol. 37B, no. 5, pp. 327-337, May 2012.
  7. J. Lee and M. Yang, "Relay selection schemes using STBC technique in OFDM-based cooperative wireless communications," J. KICS, vol. 36, no. 7, pp. 640-648, Jul. 2011. https://doi.org/10.7840/KICS.2011.36A.7.640
  8. A. D. Le, J.-B. Park, Y. O. Cho, M. A, Jeong, S. R. Lee, and Y. H. Kim, "Self-interference cancellation-aided relay beamforming for multi-way relaying systems," J. KICS, vol. 38C, no. 4, pp. 378-386, Apr. 2013. https://doi.org/10.7840/kics.2013.38C.4.378
  9. G. Feng, S. C. Liew, and P. Fan, "Minimizing interferences in wireless ad hoc networks through topology control," IEEE Int. Conf. Commun. (ICC) pp. 2332-2336, Beijing, May 2008.
  10. T. Zhou, G. He, J. A. Stankovic, and T. Abdelzaher, "RID: Radio interference detection in wireless sensor networks," in Proc. IEEE INFOCOM, vol. 2, pp. 891-901, 13-17 Mar. 2005.