DOI QR코드

DOI QR Code

FDD Massive MIMO 시스템에서의 적응 채널 추정 기법

Adaptive Channel Estimation Techniques for FDD Massive MIMO Systems

  • Chung, Jinjoo (Department of Electrical and Computer Engineering, INMAC, Seoul National University) ;
  • Han, Yonghee (Department of Electrical and Computer Engineering, INMAC, Seoul National University) ;
  • Lee, Jungwoo (Department of Electrical and Computer Engineering, INMAC, Seoul National University)
  • 투고 : 2015.03.31
  • 심사 : 2015.07.15
  • 발행 : 2015.07.31

초록

Frequency-division duplex (FDD) massive multiple-input multiple-output (MIMO) 시스템에서 하향 링크 채널 추정의 계산 복잡도는 기지국의 안테나 개수와 비례한다. 그러므로 이러한 시스템에서의 효율적인 채널 추정 방식이 연구 될 필요가 있다. 본 논문에서는 채널이 시간적, 공간적 상관관계를 가지는 모델에서 Kalman 필터와 least mean square (LMS) 등과 같은 적응 신호처리 기법을 이용한 채널 추정 방식을 제안한다.

In frequency-division duplex (FDD) massive multiple-input multiple-output (MIMO) system, the computational complexity of downlink channel estimation is proportional to the number of antennas at a base station. Therefore, effective channel estimation techniques may have to be studied. In this paper, novel channel estimation algorithms using adaptive techniques such as Kalman and least mean square (LMS) filters are proposed in a channel model with temporal and spatial correlation.

키워드

참고문헌

  1. T. L. Marzetta, "Noncooperative cellular wireless with unlimited number of base station antennas," IEEE Trans. Wirel. Commun., vol. 9, no. 11, pp. 3590-3600, Nov. 2010. https://doi.org/10.1109/TWC.2010.092810.091092
  2. F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, and T. L. Marzetta, "Scaling up MIMO: Opportunities and challenges with very large arrays," IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40-60, Jan. 2013. https://doi.org/10.1109/MSP.2011.2178495
  3. B. Shim and B. Lee, "Evolution of MIMO technology," J. KICS, vol. 38A, no. 8, pp. 712-723, Aug. 2013. https://doi.org/10.7840/kics.2013.38A.8.712
  4. J. Hoydis, S. ten Brink, and M. Debbah, "Massive MIMO in the UL/DL of cellular networks: How many antennas do we need?," IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 160-171, Feb. 2013. https://doi.org/10.1109/JSAC.2013.130205
  5. T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation, PrenticeHall, Upper Saddle River, New Jersey, 2000.
  6. J. Jang, J. Kim, and C. Moon, "Analysis of massive MIMO wireless channel characteristics," J. KICS, vol. 38B, no. 3, pp. 216-221, Mar. 2013. https://doi.org/10.7840/kics.2013.38B.3.216
  7. S. Noh, M. D. Zoltowski, Y. Sung, and D. J. Love, "Optimal pilot beam pattern design for massive MIMO systems," in Proc. IEEE ASILOMAR, Pacific Grove, CA, Nov. 2013.
  8. I. Choi, H. Noh, and C. Lee, "A codebook generation and search scheme for FDD downlink massive MIMO," J. KICS, vol. 38A, no. 8, pp. 704-711, Aug. 2013. https://doi.org/10.7840/kics.2013.38A.8.704
  9. S. Haykin, Adaptive Filter Theory, PrenticeHall, Upper Saddle River, New Jersey, 2002.
  10. Q. H. Spencer, A. L. Swindlehurst, and M. Haardt, "Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels," IEEE Trans. Signal Process., vol. 52, pp. 461-471, Feb. 2004. https://doi.org/10.1109/TSP.2003.821107

피인용 문헌

  1. 주파수 분할 방식의 거대 다중 안테나 시스템을 위한 빔형성 기반의 채널상태정보 기준신호 전송기술 vol.41, pp.5, 2015, https://doi.org/10.7840/kics.2016.41.5.520
  2. FTN 기반 전송 시스템의 성능 평가 기준에 관한 연구 vol.41, pp.11, 2015, https://doi.org/10.7840/kics.2016.41.11.1645
  3. 밀리미터파 채널 추정을 위한 압축 센싱 기법 vol.42, pp.1, 2017, https://doi.org/10.7840/kics.2017.42.1.25