DOI QR코드

DOI QR Code

An Analysis of Bed Change Characteristics by Bed Protection Work

바닥보호공 설치에 따른 하상변동 특성 분석

  • Received : 2014.12.11
  • Accepted : 2015.06.22
  • Published : 2015.08.01

Abstract

This study presents the analysis of flow and bed change characteristics considering bed protection work built on the immediate downstream of weir to protect river bed from scouring. The study area is 37km reach from Hyunpoong station to Masuwon station including Hapcheon- Changryoung multi-function weir in the Nakdong river. CCHE2D model is calibrated and validated for evaluating the flow and bed change characteristics during Typhoon Kompasu in 2010. Three simulation conditions are set up: Case 1 is a natural channel without installation of weir. Case 2 involves an installation of weir in the natural channel. Case 3 involves an installation of weir with bed protection in the natural channel. Flood frequency (50, 100 and 200yr) is applied to each scenario to analyze the effects of bed protection work. While the sediment rate is increased in the downstream of fixed gate and sluice-type gate, river bed scouring rate is increased in the downstream of lift-type gate in Case 2 comparing with the results of Case 1. The river bed scouring is not occurred in the immediate downstream of weir (~30m) due to the effect of bed protection, but larger amount of sediment is occurred in the downstream of weir (60m~) which the bed protection is not installed comparing with the results Case 1. Through the results of simulation considering bed protection work, this study would be helpful to expect bed change and operate the weir as well as manage.

본 연구에서는 세굴방지를 위하여 설치된 바닥보호공의 영향을 고려한 흐름특성 및 하상변동에 관한 연구를 수행하였다. 대상지역은 낙동강유역의 합천창녕보가 포함된 현풍 수위관측소에서부터 마수원 수위관측소까지의 구간이며, CCHE2D 모형을 적용하기 위하여 2010년 태풍 '곤파스'사상을 대상으로 검 보정하였다. 바닥보호공에 대한 영향을 분석하기 위하여 빈도별 호우사상(50년, 100년, 200년)에 대해 세 가지의 모의조건(Case 1, 2, 3)을 구성하였으며, Case 1은 보가 설치되기 이전의 조건, Case 2는 보가 설치된 이후의 조건, Case 3는 바닥보호공을 고려한 조건이다. 보의 설치로 인하여(Case 2) 고정보 및 전도게이트형 가동보 구간에는 퇴적량이 증가하였고, 리프트게이트형 가동보 구간은 높은 수위차로 인하여 보를 건설하기 이전(Case 1)보다 더 많은 세굴이 발생하였다. Case 3은 바닥보호공의 영향으로 보 직하구간(30m)에서 세굴이 발생하지 않았다. 그러나 바닥보호공이 설치되지 않은 보 하류구간(60m 이상)에서는 보가 설치되기 이전 조건(Case 1)보다 더 많은 세굴이 발생하였다. 이와 같은 결과를 통하여 본 연구결과는 실제 보에 대한 하상변동 예측과 보의 관리 및 운영에 대한 도움을 줄 수 있을 것으로 판단된다.

Keywords

References

  1. Ahn, J. M. and Lyu, S. W. (2013). "Analysis of flow and bed change on hydraulic structure using CCHE2D: Focusing on Changnyong-Haman." Journal of Korea Water Resources Association, Vol. 46, No. 7, pp. 707-717 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.7.707
  2. Jang, E. K., Ji, U., Kwon, Y. S. and Yeo, W. K. (2013). "Investigation for bed stabilization methods in the upstream channel of haman weir using CCHE2D model." Journal of the Korean Society of Civil Engineers, Vol. 33, No. 6, pp. 2211-2221 (in Korean). https://doi.org/10.12652/Ksce.2013.33.6.2211
  3. Ji, U., Yeo, W. K. and An, S. W. (2010). "Numerical analysis for bed changes due to sediment transport capacity formulas and sediment transport modes at the upstream approached channel of the nakdong river estuary barrage." Journal of Korea Water Resources Association, Vol. 43, No. 6, pp. 543-557 (in Korean). https://doi.org/10.3741/JKWRA.2010.43.6.543
  4. Jung, J. K. (2011). "An experimental study for estimation of bed protection length." Journal of Wetlands Research, Vol. 13, No. 3, pp. 677-686 (in Korean).
  5. Korea Water Resources Association (2009). River design standard.commentary (in Korean).
  6. Ministry of Land, Transport and Maritime Affairs (2009a). The detail design of development of residential sites for nakdong river 20 district (in Korean).
  7. Ministry of Land, Transport and Maritime Affairs (2009b). The basin plan of stream improvement for nakdong river; Geumho river-Estuary (in Korean).
  8. Ministry of Land, Transport and Maritime Affairs (2011). 4 Rivers reduce the flood risk, Available at: http://riverguide.go.kr (Accessed: December 8, 2014).
  9. Nakdong river first region special investigation group (2012). The report on special investigation for the Nakdong river completion (in Korean).
  10. Park, Y. J., Cho, J. K. and Im, J. H. (2007). "A study on simulation of long-term sediment transfer in medium and small scale dam upstream using SED-2D models." Journal of Korea Society of Environmental Administration, Vol. 13, No. 4, pp. 241-248 (in Korean).
  11. Shin, Y. H. and Pierre, Y. J. (2009). "Channel changes and effect of flow pulses on hydraulic geometry downstream of the Hapcheon dam." Journal of Korea Water Resources Association, Vol. 42, No. 7, pp. 579-589 (in Korean). https://doi.org/10.3741/JKWRA.2009.42.7.579
  12. Son, H. G., Lee, J. S., Shin, S. C. and Moon, C. G. (2014). "A study of sediment discharge and bed change characteristics of the local rivers in Korea." Journal of the Korean Geoenvironmental Society, Vol. 15, No. 6, pp. 31-39 (in Korean). https://doi.org/10.14481/JKGES.2014.15.6.31
  13. Wu, W. M. (2001). CCHE2D Sediment transport model, technical report No. NCCHE-TR-2001-3, National center for computational hydroscience and engineering, Oxford, Mississippi.
  14. Yang, C. T. (2003) Sediment transport:Theory and Practice, Krieger Publishing Company, Malabar, Florida.

Cited by

  1. Scour Protection Effect around the Monopile Foundation vol.20, pp.2, 2017, https://doi.org/10.7846/JKOSMEE.2017.20.2.84
  2. Numerical Analysis of River Bed Change Due to Reservoir Failure Using CCHE1D Model vol.36, pp.2, 2016, https://doi.org/10.12652/Ksce.2016.36.2.0219