DOI QR코드

DOI QR Code

Identification Characteristics of Gamma-Irradiated Dried Fishery and Mollusks Products Using Electron Spin Resonance Spectroscopy

ESR 분석법에 의한 감마선 조사 처리 건조어류 및 연체류의 조사 여부 판별 특성

  • Kim, Moon-Young (School of Food Science and Technology, Kyungpook National University) ;
  • Kim, Gui-Ran (School of Food Science and Technology, Kyungpook National University) ;
  • Kim, Dong-Sul (Ministry of Food and Drug Safety) ;
  • Jang, Hong Keun (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Kwon, Joong-Ho (School of Food Science and Technology, Kyungpook National University)
  • 김문영 (경북대학교 식품공학부) ;
  • 김귀란 (경북대학교 식품공학부) ;
  • 김동술 (식품의약품안전처) ;
  • 장홍근 (경기대학교 대학원 식품생물공학과) ;
  • 권중호 (경북대학교 식품공학부)
  • Received : 2015.01.05
  • Accepted : 2015.02.17
  • Published : 2015.05.31

Abstract

Electron spin resonance (ESR) analysis was conducted for eight different kinds of dried seafood products to investigate their gamma-irradiation status. The specimens consisted of 0~10 kGy-irradiated bones, which included five dried fishes (plaice, hairtail, saury, herring, and dried filefish) and three dried mollusks (beca squid, dried squid, and mitra squid) without flesh or marrow. ESR analysis showed that irradiated specimens exhibited typical asymmetric signals as compared to non-irradiated specimens. ESR signal intensities of all dried fishery samples significantly increased depending on irradiation dose, whereas hydroxyapetite radicals clearly appeared in irradiated plaice, saury, and hairtail. In comparing hydroxyapatite (HA) ratio, irradiated hairtail showed a greater hydroxyapatite-radical generation rate than plaice and saury, and the HA ratio significantly increased with elevated irradiation dose. However, all irradiated plaice and hairtail samples, including 5 and 10 kGy-irradiated saury, showed radiation-derived radicals, whereas filefish and mollusks did not. From the results, ESR spectroscopy was found to have potential to be applied for identifying irradiated plaice, hairtail, and saury, which all contained bones.

감마선 조사된 건조수산품 8종을 electron spin resonance(ESR) 측정법에 의한 조사 처리 여부 가능성을 알아보았다. 연체류 3종(꼴뚜기, 오징어, 한치) 및 건조어류 5종(가자미, 갈치, 꽁치, 디포리, 쥐포)의 비 조사 시료와 감마선 조사(1, 5, 10 kGy) 시료를 어육과 골수를 제거한 후 뼈를 건조한 다음 시료로 사용하였다. 그 결과 모든 건조수산품은 조사선량이 증가함에 따라 유의적으로 ESR signal intensity가 증가하였으나 조사 유래 특이 라디칼인 hydroxyapatite는 뼈가 포함된 꽁치, 가자미, 갈치 시료에서 비 조사 및 조사 시료와의 뚜렷한 차이를 나타내어 조사 여부 확인이 가능하였다. 또한 HA ratio를 비교해볼 때 갈치가 가자미 및 꽁치에 비해 hydroxyapatite 라디칼의 생성률이 가장 높은 것으로 확인되었으며 조사선량이 증가할수록 증가하였다. 그러나 꽁치는 5, 10 kGy, 가자미와 갈치는 모든 조사 처리구에서 확인이 가능한 반면, 연체동물인 꼴뚜기, 오징어, 한치의 경우 조사 유래 특이 라디칼이 확인되지 않았다. 따라서 본 연구에서는 8종의 건조수산품 중 연체류를 제외한 뼈를 포함한 건조어류 가공품에 대하여 ESR 적용 가능성을 확인하였다.

Keywords

References

  1. IAEA (International Atomic Energy Agency). 2006. Food and environmental protection newsletter 9. Joint FAO/IAEA Programme: Nuclear Techniques in Food and Agriculture, Wien, Austria. p 21-59.
  2. Raffi J, Hasbany C, Lesgards G, Ochin D. 1996. ESR detection of irradiated seashells. Appl Radiat Isot 47: 1633-1636. https://doi.org/10.1016/S0969-8043(96)00241-2
  3. Kilgren MB. 1993. Economic benefits of irradiation of molluscan shellfish in Louisiana. In Cost Benefit Aspects of Food Irradiation Processing. IAEA, Vienna, Austria. p 89-101.
  4. Kwon JH. 2010. Safety and understanding of irradiation food. Korea Food Safety Research Institute, Seoul, Korea. p 223-246.
  5. MFDS. 2014. Ministry of Food and Drug Safety. Available from ttp://www.mfds.go.kr/index.do?mid=1228 (accessed Dec 2014).
  6. MFDS. 2013. Food Standard Code. Ministry of Food and Drug Safety, Osong, Korea. No. 5-28-1.
  7. MFDS. 2009. Notification on the detection methods for irradiated food. Ministry of Food and Drug Safety, Osong, Korea. No. 2009-44.
  8. Park JM. 2011. Irradiated food labeling state investigation report. Korea Consumer Agency, Chungbuk, Korea. p 20-33.
  9. Yang JS, Kim CK, Lee HJ. 1999. Detection of irradiated chicken, pork and beef by ESR spectroscopy. Korean J Food Sci Technol 31: 606-611.
  10. EN 1786. 1996. Foodstuffs-detection of irradiated food containing bone method by ESR spectroscopy. European Committee for Standardization (CEN), Brussels, Belgium.
  11. Stewart EM, Stevenson MH, Gray R. 1994. Use of ESR spectroscopy for the detection of irradiated Crustacea. J Sci Food Agric 65: 191-197. https://doi.org/10.1002/jsfa.2740650211
  12. Nosenko VV, Vorona IP, Baran NP, Ishchenko SS, Vysotskyi BV, Krakhmalnaya TV, Semenov YA. 2014. Comparative EPR study $CO^{2-}$ radicals in modern and fossil tooth enamel. Radiat Meas In Press. doi:10.1016/j.radmeas.2014.09.004.
  13. Ikeya M. 1993. New applications of electron spin resonance: dating, dosimetry and microscopy. New World Scientific, Farrer Road, Singapore. p 185.
  14. Schramm DU, Rossi AM. 2000. Electron spin resonance (ESR) studies of $CO^{2-}$ radicals in irradiated A and B-type carbonate-containing apatites. Appl Radiat Isot 52: 1085-1091. https://doi.org/10.1016/S0969-8043(00)00046-4
  15. Wieser A, Haskell E, Kenner G, Bruenger F. 1994. EPR dosimetry of bone gains accuracy by isolation of calcified tissue. Appl Radiat Isot 45: 525-526. https://doi.org/10.1016/0969-8043(94)90119-8
  16. Da Costa ZM, Pontuschka WM, Campos LL. 2004. Study of the ESR signal of gamma irradiated hydroxyapatite for dose assessment. Nuclear Instruments and Methods in Physics Research B 218: 283-288. https://doi.org/10.1016/j.nimb.2003.11.001
  17. Caracelli I, Terrile MC, Mascarenhas S. 1986. Electron spin resonance dosimetric properties of bone. Health Phys 50: 259-263. https://doi.org/10.1097/00004032-198602000-00009
  18. Polat M, Korkmaz M, Dulkan B, Korkmaz O. 1997. Detection of irradiated chicken and dosimetric properties of drumsticks bones. Radiat Phys Chem 49: 363-369. https://doi.org/10.1016/S0969-806X(96)00088-6
  19. Saldo J, Matthys P, Vanhaelwym G, Callens F, Michalik J, Stachowicz W. 1998. EPR and ENDOR of radiation-induced $CO_3\;^{3-}$- radicals in human tooth enamel heated at $400^{\circ}C$. J Chem Soc Faraday Trans 94: 3275-3278. https://doi.org/10.1039/a805446k
  20. Helle VN, Ballin U, Etzel V, Kruse R. 1996. Etablierung analytischer methoden zur identifizierung bestrahlter fische und krebstiere. Arch Lebensmittelhyg 47: 13-21.
  21. Raffi J, Stevenson MH, Kent M, Thiery JM, Belliardo JJ. 1992. European intercomparison on electron spin resonance identification of irradiated foodstuffs. Int J Food Sci & Technol 27: 111-124.
  22. Stevenson MH, Marchioni E, Gray R, Stewart EM, Bergaentzle M, Kuntz F. 1996. The use of ESR spectroscopy for the detection of irradiated mechanically recovered meat (MRM) in tertiary food products. In Detection Methods for Irradiated Foods-Current Status. McMurray CH, Stewart M, Gray R, Pearce J, eds. The Royal Society of Chemistry, Cambridge, UK. p 53-61.
  23. Nam HS, Woo SH, Ly SY, Yang JS. 2000. Identification of irradiated fishes by ESR spectroscopy. J Korean Soc Food Sci Nutr 29: 425-429.
  24. Empis JMA, Silva HA, Nunes EL. 1995. Detection of irradiated fish using EPR of fish bone; signal intensity and stability. Fisheries Research 21: 471-475. https://doi.org/10.1016/0165-7836(94)00300-L