DOI QR코드

DOI QR Code

Chemical Properties and Immuno-Stimulating Activities of Crude Polysaccharides from Enzyme Digests of Tea Leaves

녹차 효소 처리 다당의 화학적 특성 및 면역증진 활성

  • Park, Hye-Ryung (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Suh, Hyung Joo (Department of Integrated Biomedical and Life Science, College of Health Science, Korea University) ;
  • Yu, Kwang-Won (Department of Food and Nutrition, Korea University of Transportation) ;
  • Kim, Tae Young (Bionic Trading Corporation) ;
  • Shin, Kwang-Soon (Department of Food Science and Biotechnology, Kyonggi University)
  • 박혜령 (경기대학교 식품생물공학과) ;
  • 서형주 (고려대학교 보건과학대학 의생명융합과학과) ;
  • 유광원 (한국교통대학교 식품영양학과) ;
  • 김태영 ((주)비티씨) ;
  • 신광순 (경기대학교 식품생물공학과)
  • Received : 2014.12.29
  • Accepted : 2015.04.09
  • Published : 2015.05.31

Abstract

In order to develop new immuno-stimulating ingredients from mature leaves of green tea, crude polysaccharides were isolated from pectinase digests of tea leaves (green tea enzyme digestion, GTE-0), after which their immuno-stimulating activities and chemical properties were examined. GTE-0 mainly contained neutral sugars (54.9%) such as glucose (14.2%), arabinose (12.2%), rhamnose (11.1%), and galacturonic acid (45.1%), which are characteristic of pectic polysaccharides. The anti-complementary activity of GTE-0 was similar to that of polysaccharide K (used as positive control). Number of morphologically activated macrophages was significantly increased in the GTE-0-treated group. GTE-0 significantly augmented $H_2O_2$ and reactive oxygen species production by murine peritoneal macrophage cells in a dose-dependent manner, whereas production of nitric oxide showed the highest activity at a dose of $100{\mu}g/mL$ among all tested concentrations. Murine peritoneal macrophages stimulated with GTE-0 showed enhanced production of various cytokines such as interleukin (IL)-6, IL-12, and tumor necrosis factors-${\alpha}$ in a dose-dependent manner. Further, GTE-0 induced higher phagocytic activity in a dose-dependent manner. In ex vivo assay for cytolytic activity of murine peritoneal macrophages, GTE-0-treated group showed significantly higher activity compared to the untreated group at an effector-to-target cell ratio of 20. The above results lead us to conclude that polysaccharides from leaves of green tea have a potent immuno-stimulating effect on murine peritoneal macrophage cells.

녹차 성숙잎으로부터 새로운 면역 활성 다당 소재를 개발할 목적으로 녹차잎을 pectinase로 처리하여 조다당 GTE-0을 분리하고 이들의 면역증진 활성과 화학적 특성에 대해 조사하였다. GTE-0은 중성당 54.9%, 산성당 45.1%로 이루어져 있었으며, 구성당 분석 결과 주로 glucose(14.2%), arabinose(12.2%), rhamnose(11.1%) 및 galactose(7.3%)로 구성되어 있었다. 한편 GTE-0은 비특이적 면역계에 있어 중요한 역할을 담당하고 있는 보체계에 대하여 양성대조군 PSK에 준하는 우수한 활성이 농도 의존적으로 나타났다. 또한 GTE-0을 처리하고 검경 시 형태적으로 구분이 가능한 활성화된 대식세포의 숫자가 증가되는 경향을 보였다. 대식세포의 NO, ROS 및 $H_2O_2$ 생산에 미치는 GTE-0의 효과를 검토한 결과 ROS와 $H_2O_2$는 모두 농도 의존적으로 생산량을 증가시키는 우수한 활성을 나타낸 반면, NO의 생산능은 1,000 mg/mL의 고농도에서보다 오히려 100 mg/mL의 저농도에서 더 우수한 활성을 나타내었다. 또한 GTE-0으로 자극한 대식세포는 무처리 대조군에 비해 IL-6, IL-12 및 TNF-${\alpha}$와 같은 다양한 cytokine들의 생산이 농도 의존적으로 증가되는 경향을 보였다. 대식세포의 식작용 활성을 측정한 결과 무처리 대조군에 비해 GTE-0 100 mg/mL 농도이상 처리하였을 때 우수한 활성을 나타내었다. 또한 활성화된 대식세포의 YAC-1 종양세포주에 대한 치사 활성을 ex vivo로 측정한 결과 100 mg/mL의 농도에서 무처리군 대비 유의적으로 높은 치사 활성을 보였다. 이상의 결과로부터 녹차 성숙잎으로부터 분리된 효소 처리 조다당 GTE-0은 강력한 면역 활성 증진 효과를 갖고 있음을 결론지을 수 있었다.

Keywords

References

  1. Hoebe K, Janssen E, Beutler B. 2004. The interface between innate and adaptive immunity. Nat Immunol 5: 971-974.
  2. Birk RW, Gratchev A, Hakiy N, Politz O, Schledzewski K, Guillot P, Orfanos CE, Goerdt S. 2001. Alternative activation of antigen-presenting cells: concepts and clinical relevance. Hautarzt 52: 193-200. https://doi.org/10.1007/s001050051289
  3. Booth JS, Nichani AK, Benjamin P, Dar A, Krieg AM, Babiuk LA, Mutwiri GK. 2007. Innate immune responses induced by classes of CpG oligodeoxynucleotides in ovine lymph node and blood mononuclear cells. Vet Immunol Immunopathol 115: 24-34. https://doi.org/10.1016/j.vetimm.2006.09.008
  4. Klimp AH, de Vries EG, Scherphof GL, Daemen T. 2002. A potential role of macrophage activation in the treatment of cancer. Crit Rev Oncol Hematol 44: 143-161. https://doi.org/10.1016/S1040-8428(01)00203-7
  5. Lingen MW. 2001. Role of leukocytes and endothelial cells in the development of angiogenesis in inflammation and wound healing. Arch Pathol Lab Med 125: 67-71.
  6. Park YH, Won EK, Son DJ. 2002. Effect of pH on the stability of green tea catechins. J Fd Hyg Safety 17: 117-123.
  7. Nakabayashi T, Ina K, Sakata K. 1994. Chemistry and function of green, black and oolong tea. Kogagu Press, Kawasaki, Japan. p 20-51.
  8. Ahmad N, Feyes DK, Nieminen AL, Agarwal R, Mukhtar H. 1997. Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Natl Cancer Inst 89: 1881-1886. https://doi.org/10.1093/jnci/89.24.1881
  9. Kim SH, Lee MH, Jeong YJ. 2014. Current trends and development substitute tea and plan in the Korean green tea industry. Food Industry and Nutrition 19(1): 20-25.
  10. Chen H, Zhang M, Xie B. 2005. Components and antioxidant activity of polysaccharide conjugate from green tea. Food Chem 90: 17-21. https://doi.org/10.1016/j.foodchem.2004.03.001
  11. Monobe M, Ema K, Kato F, Maeda-Yamamoto M. 2008. Immunostimulating activity of a crude polysaccharide derived from green tea (Camellia sinensis) extract. J Agric Food Chem 56: 1423-1427. https://doi.org/10.1021/jf073127h
  12. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356. https://doi.org/10.1021/ac60111a017
  13. Blumenkrantz N, Asboe-Hansen G. 1973. New method for quantitative determination of uronic acids. Anal Biochem 54: 484-489. https://doi.org/10.1016/0003-2697(73)90377-1
  14. Karkhanis YD, Zeltner JY, Jackson JJ, Carlo DJ. 1978. A new and improved microassay to determine 2-keto-3-deoxyoctonate in lipopolysaccharide of gram-negative bacteria. Anal Biochem 85: 595-601. https://doi.org/10.1016/0003-2697(78)90260-9
  15. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  16. Jones TM, Albersheim P. 1972. A gas chromatographic method for the determination of aldose and uronic acid constituents of plant cell wall polysaccharides. Plant Physiol 49: 926-936. https://doi.org/10.1104/pp.49.6.926
  17. Kabat EA, Mayer MM. 1971. Experimental immunochemistry. Thomas Publisher, Springfield, IL, USA. p 133-240.
  18. Yamada H, Ra KS, Kiyohara H, Cyong JC, Otsuka Y. 1989. Structural characterization of an anti-complementary pectic polysaccharide from the roots of Bupleurum falcatum L. Carbohydr Res 189: 209-226. https://doi.org/10.1016/0008-6215(89)84098-4
  19. Iacomini M, Serrato RV, Sassaki GL, Lopes L, Buchi DF, Gorin PA. 2005. Isolation and partial characterization of a pectic polysaccharide from the fruit pulp of Spondias cytherea and its effect on peritoneal macrophage activation. Fitoterapia 76: 676-683. https://doi.org/10.1016/j.fitote.2005.08.017
  20. De la Harpe J, Nathan CF. 1985. A semi-automated microassay for $H_2O_2$ release by human blood monocytes and mouse peritoneal macrophages. J Immunol Methods 78: 323-336. https://doi.org/10.1016/0022-1759(85)90089-4
  21. Ridley BL, O'Neill MA, Mohnen D. 2001. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57: 929-967. https://doi.org/10.1016/S0031-9422(01)00113-3
  22. O'Neill M, Albersheim P, Darvill A. 1990. The pectic polysaccharides of primary cell walls. In Methods in Plant Biochemistry. Carbohydrates Academic, London, UK. p 415-441.
  23. Engelsen SB, Cros S, Mackie W, Perez S. 1996. A molecular builder for carbohydrates: application to polysaccharides and complex carbohydrates. Biopolymers 39: 417-433. https://doi.org/10.1002/(SICI)1097-0282(199609)39:3<417::AID-BIP13>3.3.CO;2-R
  24. Ishii T, Matsunaga T. 2001. Pectic polysaccharide rhamnogalacturonan II is covalently linked to homogalacturonan. Phytochemistry 57: 969-974. https://doi.org/10.1016/S0031-9422(01)00047-4
  25. Perez S, Rodriguez-Carvajal MA, Doco T. 2003. A complex plant cell wall polysaccharide: rhamnogalacturonan II. A structure in quest of a function. Biochimie 85: 109-121. https://doi.org/10.1016/S0300-9084(03)00053-1
  26. Srivastava R, Kulshreshtha DK. 1989. Bioactive polysacchrides from plant. Phytochemistry 28: 2877-2883. https://doi.org/10.1016/0031-9422(89)80245-6
  27. Yamada H, Kiyohara H. 1989. Bioactive polysaccharides from Chinese herbal medicines. Chinese Med 3: 104-124.
  28. Holers VM. 2003. The complement system as a therapeutic target in autoimmunity. Clin Immunol 107: 140-151. https://doi.org/10.1016/S1521-6616(03)00034-2
  29. Whaley K. 1986. The complement system. In Complement in Health and Disease. Whaley K, ed. MTP Press, Lancaster, PA, USA. p 1-35.
  30. Tsukagoshi S, Hashimoto Y, Fujii G, Kobayashi H, Nomoto K, Orita K. 1984. Krestin (PSK). Cancer Treat Rev 11: 131-155.
  31. Wynn TA, Freund YR, Paulnock DM. 1992. TNF-alpha differentially regulates Ia antigen expression and macrophage tumoricidal activity in two murine macrophage cell lines. Cell Immunol 140: 184-196. https://doi.org/10.1016/0008-8749(92)90186-S
  32. Keller R, Keist R, Wechsler A, Leist TP, van der Meide PH. 1990. Mechanisms of macrophage-mediated tumor cell killing: a comparative analysis of the roles of reactive nitrogen intermediates and tumor necrosis factor. Int J Cancer 46: 682-686. https://doi.org/10.1002/ijc.2910460422
  33. Wang H, Actor JK, Indrigo J, Olsen M, Dasgupta A. 2003. Asian and Siberian ginseng as a potential modulator of immune function: an in vitro cytokine study using mouse macrophages. Clin Chim Acta 327: 123-128. https://doi.org/10.1016/S0009-8981(02)00343-1
  34. Gordon S. 2002. Pattern recognition receptors: doubling up for the innate immune response. Cell 111: 927-930. https://doi.org/10.1016/S0092-8674(02)01201-1
  35. Rice PJ, Kelley JL, Kogan G, Ensley HE, Kalbfleisch JH, Browder IW, Williams DL. 2002. Human monocyte scavenger receptors are pattern recognition receptors for (1$\rightarrow$3)-beta-D-glucans. J Leukoc Biol 72: 140-146.
  36. Taylor PR, Brown GD, Reid DM, Willment JA, Martinez-Pomares L, Gordon S, Wong SY. 2002. The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol 169: 3876-3882. https://doi.org/10.4049/jimmunol.169.7.3876
  37. Shao BM, Xu W, Dai H, Tu P, Li Z, Gao XM. 2004. A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb. Biochem Biophys Res Commun 320: 1103-1111. https://doi.org/10.1016/j.bbrc.2004.06.065
  38. Stuehr DJ. 1999. Mammalian nitric oxide synthases. Biochim Biophys Acta 1411: 217-230. https://doi.org/10.1016/S0005-2728(99)00016-X
  39. Kroncke KD, Fehsel K, Kolb-Bachofen V. 1998. Inducible nitric oxide synthase in human diseases Clin Exp Immunol 113: 147-156. https://doi.org/10.1046/j.1365-2249.1998.00648.x
  40. Guinazu N, Carrera-Silva EA, Becerra MC, Pellegrini A, Albesa I, Gea S. 2010. Induction of NADPH oxidase activity and reactive oxygen species production by a single Trypanosoma cruzi antigen. Int J Parasitol 40: 1531-1538. https://doi.org/10.1016/j.ijpara.2010.05.012
  41. Gelderman KA, Hultqvist M, Olsson LM, Bauer K, Pizzolla A, Olofsson P, Holmdahl R. 2007. Rheumatoid arthritis: the role of reactive oxygen species in disease development and therapeutic strategies. Antioxid Redox Signal 9: 1541-1567. https://doi.org/10.1089/ars.2007.1569
  42. Hultqvist M, Backlund J, Bauer K, Gelderman KA, Holmdahl R. 2007. Lack of reactive oxygen species breaks T cell tolerance to collagen type II and allows development of arthritis in mice. J Immunol 179: 1431-1437. https://doi.org/10.4049/jimmunol.179.3.1431
  43. Hultqvist M, Olofsson P, Holmberg J, Backstrom BT, Tordsson J, Holmdahl R. 2004. Enhanced autoimmunity, arthritis, and encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the Ncf1 gene. Proc Natl Acad Sci USA 101: 12646-12651. https://doi.org/10.1073/pnas.0403831101
  44. Hamilton TA, Adams DO. 1987. Molecular mechanisms of signal transduction in macrophages. Immunol Today 8: 151-158. https://doi.org/10.1016/0167-5699(87)90145-9
  45. Lasek W, Feleszko W, Golab J, Stoklosa T, Marczak M, Dabrowska A, Malejczyk M, Jakobisiak M. 1997. Antitumor effects of the combination immunotherapy with interleukin-12 and tumor necrosis factor alpha in mice. Cancer Immunol Immunother 45: 100-108. https://doi.org/10.1007/s002620050408
  46. Lee JN, Lee DY, Ji IH, Kim GE, Kim HN, Sohn J, Kim S, Kim CW. 2001. Purification of soluble beta-glucan with immune-enhancing activity from the cell wall of yeast. Biosci Biotechnol Biochem 65: 837-841. https://doi.org/10.1271/bbb.65.837
  47. Wan CP, Park CS, Lau BH. 1993. A rapid and simple microfluorometric phagocytosis assay. J Immunol Methods 162: 1-7. https://doi.org/10.1016/0022-1759(93)90400-2
  48. Schantz SP, Brown BW, Lira E, Taylor DL, Beddingfield N. 1987. Evidence for the role of natural immunity in the control of metastatic spread of head and neck cancer. Cancer Immunol Immunother 25: 141-148.
  49. Saiki I, Saito S, Fujita C, Ishida H, Iida J, Murata J, Hasegawa A, Azuma I. 1988. Induction of tumoricidal macrophages and production of cytokines by synthetic muramyl dipeptide analogues. Vaccine 6: 238-244. https://doi.org/10.1016/0264-410X(88)90218-6

Cited by

  1. 새싹보리, 레몬밤 및 녹차 첨가 쿠키의 이화학적 항산화적 특성 vol.35, pp.5, 2015, https://doi.org/10.7318/kjfc/2020.35.5.459