References
- Blanco, E., Bey, E. A., Khemtong, C., Yang, S. G., Setti-Guthi, J., Chen, H., Kessinger, C. W., Carnevale, K. A., Bornmann, W. G., Boothman, D. A. and Gao, J. (2010) Beta-lapachone micellar nanotherapeutics for non-small cell lung cancer therapy. Cancer Res. 70, 3896-3904. https://doi.org/10.1158/0008-5472.CAN-09-3995
-
Byun, S. J., Son, Y., Cho, B. H., Chung, H.-T. and Pae, H.-O. (2013)
${\beta}$ -Lapachone, a substrate of NAD(P)H:quinone oxidoreductase, induces anti-inflammatory heme oxygenase-1 via AMP-activated protein kinase activation in RAW264.7 macrophages. J. Clin. Biochem. Nutr. 52, 106-111. https://doi.org/10.3164/jcbn.12-80 - Crooke, R. M., Graham, M. J., Martin, M. J., Lemonidis, K. M., Wyrzykiewiecz, T. and Cummins, L. L. (2000) Metabolism of antisense oligonucleotides in rat liver homogenates. J. Pharmacol. Exp. Ther. 292, 140-149.
- Dong, Y., Chin, S. F., Blanco, E., Bey, E. A., Kabbani, W., Xie, X. J., Bornmann, W. G., Boothman, D. A. and Gao, J. (2009) Intratumoral delivery of beta-lapachone via polymer implants for prostate cancer therapy. Clin. Cancer Res. 15, 131-139. https://doi.org/10.1158/1078-0432.CCR-08-1691
- Hao, H., Wang, G., Cui, N., Li, J., Xie, L. and Ding, Z. (2007) Identification of a novel intestinal first pass metabolic pathway: NQO1 mediated quinone reduction and subsequent glucuronidation. Curr. Drug Metab. 8, 137-149. https://doi.org/10.2174/138920007779816011
- Koo, T. S., Kim, D. H., Ahn, S. H., Kim, K. P., Kim, I. W., Seo, S. Y., Suh, Y. G., Kim, D. D., Shim, C. K. and Chung, S. J. (2005) Comparison of pharmacokinetics of loxoprofen and its active metabolites after an intravenous, intramuscular, and oral administration of loxoprofen in rats: evidence for extrahepatic metabolism. J. Pharm. Sci. 94, 2187-2197. https://doi.org/10.1002/jps.20451
-
Lee, J. H., Cheong, J., Park, Y. M. and Choi, Y. H. (2005) Down-regulation of cyclooxygenase-2 and telomerase activity by
${\beta}$ -lapachone in human prostate carcinoma cells. Pharmacol. Res. 51, 553-560 https://doi.org/10.1016/j.phrs.2005.02.004 -
Miao, X. S., Song, P., Savage, R. E., Zhong, C., Yang, R.-Y., Kizer, D., Wu, H., Volckova, E., Ashwell, M. A., Supko, J. G., He, X. and Chan, T. C. (2008) Identification of the in vitro metabolites of 3,4-dihydro-2,2-dimethyl-2H-naphthol[1,2-b]pyran-5,6-dione (ARQ 501;
${\beta}$ -lapachone) in whole blood. Drug Metab. Dispos. 36, 641-648. https://doi.org/10.1124/dmd.107.018572 -
Nasongkla, N., Wiedmann, A. F., Bruening, A., Beman, M., Ray, D., Bornmann, W. G., Boothman, D. A. and Gao J. (2003) Enhancement of solubility and bioavailability of
${\beta}$ -lapachone using cyclodextrin inclusion complexes. Pharm. Res. 20, 1626-1633. https://doi.org/10.1023/A:1026143519395 -
Park, M.-T., Song, M.-J., Lee, H., Oh, E.-T., Choi, B.-H., Jeong, S.-Y., Choi, E.-K. and Park, H.J. (2011)
${\beta}$ -lapachone significantly increases the effect of ionizing radiation to cause mitochondrial apoptosis via JNK activation in cancer cells. PLoS One 6, e25976. https://doi.org/10.1371/journal.pone.0025976 -
Savage, R. E., Tyler, A. N., Miao, X.-S. and Chan, T. C. K. (2008) Identification of a novel glucosylsulfate conjugate as a metabolite of 3,4-dihydro-2,2-dimethyl-2H-naphtho[1,2-b]pyran-5,6-dione (ARQ 501,
${\beta}$ -lapachone) in mammals. Drug Metab. Dispos. 36, 753-758. https://doi.org/10.1124/dmd.107.018655 - Subramanian, N., Subhabrata, R., Ghosal, S. K., Bhadra, R. and Moulik, S. P. (2004) Formulation design of self-microemulsifying drug delivery systems for improved oral bioavailability of celecoxib. Biol. Pharm. Bull. 27, 1993-1999. https://doi.org/10.1248/bpb.27.1993
- Takano, R., Furumoto, K., Shiraki, K., Takata, N., Hayashi, Y., Aso, Y. and Yamashita, S. (2008) Rate-limiting steps of oral absorption for poorly water-soluble drugs in dogs; prediction from a miniscale dissolution test and a physiologically-based computer simulation. Pharm. Res. 25, 2334-2344. https://doi.org/10.1007/s11095-008-9637-9
-
Tzeng, H. P., Ho, F. M., Chao, K. F., Kuo, M. L., Lin-Shiau, S. Y. and Liu, S. H. (2003)
${\beta}$ -Lapachone reduces endotoxin-induced macrophage activation and lung edema and mortality. Am. J. Respir. Crit. Care Med. 168, 85-91. https://doi.org/10.1164/rccm.200209-1051OC
Cited by
- Lapachol and lapachone analogs: a journey of two decades of patent research(1997-2016) vol.27, pp.10, 2017, https://doi.org/10.1080/13543776.2017.1339792
- Enhancing Oral Absorption of β-Lapachone: Progress Till Date vol.42, pp.1, 2017, https://doi.org/10.1007/s13318-016-0369-7
- Intestinal Permeability of β-Lapachone and Its Cyclodextrin Complexes and Physical Mixtures vol.41, pp.6, 2016, https://doi.org/10.1007/s13318-015-0310-5
- Activation of NQO-1 mediates the augmented contractions of isolated arteries due to biased activity of soluble guanylyl cyclase in their smooth muscle vol.391, pp.11, 2018, https://doi.org/10.1007/s00210-018-1548-7
- Mechanically Robust Gastroretentive Drug-Delivery Systems Capable of Controlling Dissolution Behaviors of Coground β-Lapachone vol.11, pp.6, 2015, https://doi.org/10.3390/pharmaceutics11060271
- Anticancer Potential of Resveratrol, β-Lapachone and Their Analogues vol.25, pp.4, 2015, https://doi.org/10.3390/molecules25040893
- In silico, in vitro and in vivo evaluation of natural Bignoniaceous naphthoquinones in comparison with atovaquone targeting the selection of potential antimalarial candidates vol.401, pp.None, 2020, https://doi.org/10.1016/j.taap.2020.115074
- The possibility of low isomerization of β-lapachone in the human body vol.29, pp.3, 2015, https://doi.org/10.12793/tcp.2021.29.e16
- Nanocomposite gels of poloxamine and Laponite for β-Lapachone release in anticancer therapy vol.163, pp.None, 2015, https://doi.org/10.1016/j.ejps.2021.105861