DOI QR코드

DOI QR Code

Antitumor Effects of Fucoidan on Human Colon Cancer Cells via Activation of Akt Signaling

  • Han, Yong-Seok (Soonchunhyang Medical Science Research Institute, Soonchunhyang University Seoul Hospital) ;
  • Lee, Jun Hee (Laboratory for Vascular Medicine & Stem Cell Biology, Medical Research institute, Department of Physiology, School of Medicine, Pusan National University) ;
  • Lee, Sang Hun (Soonchunhyang Medical Science Research Institute, Soonchunhyang University Seoul Hospital)
  • Received : 2014.12.09
  • Accepted : 2015.01.26
  • Published : 2015.05.01

Abstract

We identified a novel Akt signaling mechanism that mediates fucoidan-induced suppression of human colon cancer cell (HT29) proliferation and anticancer effects. Fucoidan treatment significantly inhibited growth, induced G1-phase-associated upregulation of p21WAF1 expression, and suppressed cyclin and cyclin-dependent kinase expression in HT29 colon cancer cells. Additionally, fucoidan treatment activated the Akt signaling pathway, which was inhibited by treatment with an Akt inhibitor. The inhibition of Akt activation reversed the fucoidan-induced decrease in cell proliferation, the induction of G1-phase-associated p21WAF1 expression, and the reduction in cell cycle regulatory protein expression. Intraperitoneal injection of fucoidan reduced tumor volume; this enhanced antitumor efficacy was associated with induction of apoptosis and decreased angiogenesis. These data suggest that the activation of Akt signaling is involved in the growth inhibition of colon cancer cells treated with fucoidan. Thus, fucoidan may serve as a potential therapeutic agent for colon cancer.

Keywords

References

  1. Ahn, G., Hwang, I., Park, E., Kim, J., Jeon, Y. J., Lee, J., Park, J. W. and Jee, Y. (2008) Immunomodulatory effects of an enzymatic extract from Ecklonia cava on murine splenocytes. Mar. Biotechnol. (NY) 10, 278-289. https://doi.org/10.1007/s10126-007-9062-9
  2. Aisa, Y., Miyakawa, Y., Nakazato, T., Shibata, H., Saito, K., Ikeda, Y. and Kizaki, M. (2005) Fucoidan induces apoptosis of human HSsultan cells accompanied by activation of caspase-3 and downregulation of ERK pathways. Am. J. Hematol. 78, 7-14. https://doi.org/10.1002/ajh.20182
  3. Boo, H. J., Hyun, J. H., Kim, S. C., Kang, J. I., Kim, M. K., Kim, S. Y., Cho, H., Yoo, E. S. and Kang, H. K. (2011) Fucoidan from Undaria pinnatifida induces apoptosis in A549 human lung carcinoma cells. Phytother. Res. 25, 1082-1086. https://doi.org/10.1002/ptr.3489
  4. Brett, C. M., Washington, C. B., Ott, R. J., Gutierrez, M. M. and Giacomini, K. M. (1993) Interaction of nucleoside analogues with the sodium-nucleoside transport system in brush border membrane vesicles from human kidney. Pharm. Res. 10, 423-426. https://doi.org/10.1023/A:1018948608211
  5. Chen, L. C. and Lee, W. S. (2013) P27/Kip1 is responsible for magnolol-induced U373 apoptosis in vitro and in vivo. J. Agric. Food Chem. 61, 2811-2819. https://doi.org/10.1021/jf400542m
  6. Coura, C. O., de Araujo, I. W., Vanderlei, E. S., Rodrigues, J. A., Quindere, A. L., Fontes, B. P., de Queiroz, I. N., de Menezes, D. B., Bezerra, M. M., e Silva, A. A., Chaves, H. V., Jorge, R. J., Evangelista, J. S. and Benevides, N. M. (2012) Antinociceptive and antiinflammatory activities of sulphated polysaccharides from the red seaweed Gracilaria cornea. Basic Clin. Pharmacol. Toxicol. 110, 335-341. https://doi.org/10.1111/j.1742-7843.2011.00811.x
  7. Croci, D. O., Cumashi, A., Ushakova, N. A., Preobrazhenskaya, M. E., Piccoli, A., Totani, L., Ustyuzhanina, N. E., Bilan, M. I., Usov, A. I., Grachev, A. A., Morozevich, G. E., Berman, A. E., Sanderson, C. J., Kelly, M., Di Gregorio, P., Rossi, C., Tinari, N., Iacobelli, S., Rabinovich, G. A., Nifantiev, N. E. and Consorzio Interuniversitario Nazionale per la Bio-Oncologia, I. (2011) Fucans, but not fucomannoglucuronans, determine the biological activities of sulfated polysaccharides from Laminaria saccharina brown seaweed. PLoS One 6, e17283. https://doi.org/10.1371/journal.pone.0017283
  8. Cumashi, A., Ushakova, N. A., Preobrazhenskaya, M. E., D'Incecco, A., Piccoli, A., Totani, L., Tinari, N., Morozevich, G. E., Berman, A. E., Bilan, M. I., Usov, A. I., Ustyuzhanina, N. E., Grachev, A. A., Sanderson, C. J., Kelly, M., Rabinovich, G. A., Iacobelli, S., Nifantiev, N. E. and Consorzio Interuniversitario Nazionale per la Bio-Oncologia, I. (2007) A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17, 541-552. https://doi.org/10.1093/glycob/cwm014
  9. Damonte, E. B., Matulewicz, M. C. and Cerezo, A. S. (2004) Sulfated seaweed polysaccharides as antiviral agents. Curr. Med. Chem. 11, 2399-2419. https://doi.org/10.2174/0929867043364504
  10. Fang, Q., Naidu, K. A., Naidu, K. A., Zhao, H., Sun, M., Dan, H. C., Nasir, A., Kaiser, H. E., Cheng, J. Q., Nicosia, S. V. and Coppola, D. (2006) Ascorbyl stearate inhibits cell proliferation and tumor growth in human ovarian carcinoma cells by targeting the PI3K/AKT pathway. Anticancer Res. 26, 203-209.
  11. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. and Elledge, S. J. (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805-816. https://doi.org/10.1016/0092-8674(93)90499-G
  12. Hill, M. M. and Hemmings, B. A. (2002) Inhibition of protein kinase B/Akt. implications for cancer therapy. Pharmacol. Ther. 93, 243-251. https://doi.org/10.1016/S0163-7258(02)00193-6
  13. Itoh, H., Noda, H., Amano, H., Zhuaug, C., Mizuno, T. and Ito, H. (1993) Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae. Anticancer Res. 13, 2045-2052.
  14. Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R. C., Ghafoor, A., Feuer, E. J. and Thun, M. J. (2005) Cancer statistics, 2005. CA Cancer J. Clin. 55, 10-30. https://doi.org/10.3322/canjclin.55.1.10
  15. Jin, M. L., Park, S. Y., Kim, Y. H., Park, G., Son, H. J. and Lee, S. J. (2012) Suppression of alpha-MSH and IBMX-induced melanogenesis by cordycepin via inhibition of CREB and MITF, and activation of PI3K/Akt and ERK-dependent mechanisms. Int. J. Mol. Med. 29, 119-124.
  16. Koyanagi, S., Tanigawa, N., Nakagawa, H., Soeda, S. and Shimeno, H. (2003) Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochem. Pharmacol. 65, 173-179. https://doi.org/10.1016/S0006-2952(02)01478-8
  17. Lee, H., Kim, J. S. and Kim, E. (2012) Fucoidan from seaweed Fucus vesiculosus inhibits migration and invasion of human lung cancer cell via PI3K-Akt-mTOR pathways. PLoS One 7, e50624. https://doi.org/10.1371/journal.pone.0050624
  18. Osaki, M., Oshimura, M. and Ito, H. (2004) PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9, 667-676. https://doi.org/10.1023/B:APPT.0000045801.15585.dd
  19. Samowitz, W. S. and Slattery, M. L. (2002) Missense mismatch repair gene alterations, microsatellite instability, and hereditary nonpolyposis colorectal cancer. J. Clin. Oncol. 20, 3178; author reply 3178-3179. https://doi.org/10.1200/JCO.2002.20.14.3178
  20. Sarkar, F. H. and Li, Y. (2004) Cell signaling pathways altered by natural chemopreventive agents. Mutat. Res. 555, 53-64. https://doi.org/10.1016/j.mrfmmm.2004.04.015
  21. Sherr, C. J. (1994) G1 phase progression: cycling on cue. Cell 79, 551-555. https://doi.org/10.1016/0092-8674(94)90540-1
  22. Sherr, C. J. (1996) Cancer cell cycles. Science 274, 1672-1677. https://doi.org/10.1126/science.274.5293.1672
  23. Song, G., Ouyang, G. and Bao, S. (2005) The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med. 9, 59-71. https://doi.org/10.1111/j.1582-4934.2005.tb00337.x
  24. Vivanco, I. and Sawyers, C. L. (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2, 489-501. https://doi.org/10.1038/nrc839
  25. Xue, M., Ge, Y., Zhang, J., Liu, Y., Wang, Q., Hou, L. and Zheng, Z. (2013) Fucoidan inhibited 4T1 mouse breast cancer cell growth in vivo and in vitro via downregulation of Wnt/beta-catenin signaling. Nutr. Cancer 65, 460-468. https://doi.org/10.1080/01635581.2013.757628
  26. Xue, M., Ge, Y., Zhang, J., Wang, Q., Hou, L., Liu, Y., Sun, L. and Li, Q. (2012) Anticancer properties and mechanisms of fucoidan on mouse breast cancer in vitro and in vivo. PLoS One 7, e43483. https://doi.org/10.1371/journal.pone.0043483

Cited by

  1. Butyrate-mediated acquisition of chemoresistance by human colon cancer cells vol.36, pp.2, 2016, https://doi.org/10.3892/or.2016.4838
  2. The potential of brown-algae polysaccharides for the development of anticancer agents: An update on anticancer effects reported for fucoidan and laminaran vol.177, 2017, https://doi.org/10.1016/j.carbpol.2017.09.005
  3. Fucoidan induces Toll-like receptor 4-regulated reactive oxygen species and promotes endoplasmic reticulum stress-mediated apoptosis in lung cancer vol.7, 2017, https://doi.org/10.1038/srep44990
  4. Induction of Growth Inhibition and Apoptosis in Human Cancer Cells by a Brown Algae Extract vol.26, pp.5, 2016, https://doi.org/10.5352/JLS.2016.26.5.555
  5. Angiomodulators in cancer therapy: New perspectives vol.89, 2017, https://doi.org/10.1016/j.biopha.2017.02.071
  6. Induction of p53-Independent Apoptosis and G1 Cell Cycle Arrest by Fucoidan in HCT116 Human Colorectal Carcinoma Cells vol.15, pp.6, 2017, https://doi.org/10.3390/md15060154
  7. Crude Fucoidan Extracts Impair Angiogenesis in Models Relevant for Bone Regeneration and Osteosarcoma via Reduction of VEGF and SDF-1 vol.15, pp.6, 2017, https://doi.org/10.3390/md15060186
  8. Anticancer Effect of Fucoidan on DU-145 Prostate Cancer Cells through Inhibition of PI3K/Akt and MAPK Pathway Expression vol.14, pp.7, 2016, https://doi.org/10.3390/md14070126
  9. Fucoidans in Nanomedicine vol.14, pp.8, 2016, https://doi.org/10.3390/md14080145
  10. Mechanism study of endothelial protection and inhibits platelet activation of low molecular weight fucoidan from Laminaria japonica vol.15, pp.5, 2016, https://doi.org/10.1007/s11802-016-3016-7
  11. Comparison of anticancer activities of Korean Red Ginseng-derived fractions vol.41, pp.3, 2017, https://doi.org/10.1016/j.jgr.2016.11.001
  12. Fucoidan Does Not Exert Anti-Tumorigenic Effects on Uveal Melanoma Cell Lines vol.15, pp.7, 2017, https://doi.org/10.3390/md15070193
  13. A review about the development of fucoidan in antitumor activity: Progress and challenges vol.154, 2016, https://doi.org/10.1016/j.carbpol.2016.08.005
  14. Endoplasmic reticulum stress induces 5-fluorouracil resistance in human colon cancer cells vol.44, 2016, https://doi.org/10.1016/j.etap.2016.05.005
  15. Fucoidan inhibits angiogenesis induced by multiple myeloma cells vol.36, pp.4, 2016, https://doi.org/10.3892/or.2016.4987
  16. extracts vol.137, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/137/1/012064
  17. Antiproliferative Activity of Glycosaminoglycan-Like Polysaccharides Derived from Marine Molluscs vol.16, pp.2, 2018, https://doi.org/10.3390/md16020063
  18. Fucoidan Structure and Activity in Relation to Anti-Cancer Mechanisms vol.17, pp.1, 2019, https://doi.org/10.3390/md17010032
  19. Fucoidan Exerts Anticancer Effects Against Head and Neck Squamous Cell Carcinoma In Vitro vol.23, pp.12, 2015, https://doi.org/10.3390/molecules23123302
  20. Macroalgal Polysaccharides in Biomimetic Nanodelivery Systems vol.25, pp.11, 2015, https://doi.org/10.2174/1381612825666190423155116
  21. Comparison of the Effects of Fucoidans on the Cell Viability of Tumor and Non-Tumor Cell Lines vol.17, pp.8, 2015, https://doi.org/10.3390/md17080441
  22. Clinical applications of fucoidan in translational medicine for adjuvant cancer therapy vol.8, pp.1, 2019, https://doi.org/10.1186/s40169-019-0234-9
  23. Isobolographic Analysis Demonstrates the Additive and Synergistic Effects of Gemcitabine Combined with Fucoidan in Uterine Sarcomas and Carcinosarcoma Cells vol.12, pp.1, 2015, https://doi.org/10.3390/cancers12010107
  24. Fucoidan Structure and Its Impact on Glucose Metabolism: Implications for Diabetes and Cancer Therapy vol.19, pp.1, 2015, https://doi.org/10.3390/md19010030
  25. Fucoidan-Supplemented Diet Potentiates Immune Checkpoint Blockage by Enhancing Antitumor Immunity vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.733246
  26. A comprehensive review on the health benefits and nutritional significance of fucoidan polysaccharide derived from brown seaweeds in human, animals and aquatic organisms vol.27, pp.3, 2015, https://doi.org/10.1111/anu.13233