References
- Ahn, G., Hwang, I., Park, E., Kim, J., Jeon, Y. J., Lee, J., Park, J. W. and Jee, Y. (2008) Immunomodulatory effects of an enzymatic extract from Ecklonia cava on murine splenocytes. Mar. Biotechnol. (NY) 10, 278-289. https://doi.org/10.1007/s10126-007-9062-9
- Aisa, Y., Miyakawa, Y., Nakazato, T., Shibata, H., Saito, K., Ikeda, Y. and Kizaki, M. (2005) Fucoidan induces apoptosis of human HSsultan cells accompanied by activation of caspase-3 and downregulation of ERK pathways. Am. J. Hematol. 78, 7-14. https://doi.org/10.1002/ajh.20182
- Boo, H. J., Hyun, J. H., Kim, S. C., Kang, J. I., Kim, M. K., Kim, S. Y., Cho, H., Yoo, E. S. and Kang, H. K. (2011) Fucoidan from Undaria pinnatifida induces apoptosis in A549 human lung carcinoma cells. Phytother. Res. 25, 1082-1086. https://doi.org/10.1002/ptr.3489
- Brett, C. M., Washington, C. B., Ott, R. J., Gutierrez, M. M. and Giacomini, K. M. (1993) Interaction of nucleoside analogues with the sodium-nucleoside transport system in brush border membrane vesicles from human kidney. Pharm. Res. 10, 423-426. https://doi.org/10.1023/A:1018948608211
- Chen, L. C. and Lee, W. S. (2013) P27/Kip1 is responsible for magnolol-induced U373 apoptosis in vitro and in vivo. J. Agric. Food Chem. 61, 2811-2819. https://doi.org/10.1021/jf400542m
- Coura, C. O., de Araujo, I. W., Vanderlei, E. S., Rodrigues, J. A., Quindere, A. L., Fontes, B. P., de Queiroz, I. N., de Menezes, D. B., Bezerra, M. M., e Silva, A. A., Chaves, H. V., Jorge, R. J., Evangelista, J. S. and Benevides, N. M. (2012) Antinociceptive and antiinflammatory activities of sulphated polysaccharides from the red seaweed Gracilaria cornea. Basic Clin. Pharmacol. Toxicol. 110, 335-341. https://doi.org/10.1111/j.1742-7843.2011.00811.x
- Croci, D. O., Cumashi, A., Ushakova, N. A., Preobrazhenskaya, M. E., Piccoli, A., Totani, L., Ustyuzhanina, N. E., Bilan, M. I., Usov, A. I., Grachev, A. A., Morozevich, G. E., Berman, A. E., Sanderson, C. J., Kelly, M., Di Gregorio, P., Rossi, C., Tinari, N., Iacobelli, S., Rabinovich, G. A., Nifantiev, N. E. and Consorzio Interuniversitario Nazionale per la Bio-Oncologia, I. (2011) Fucans, but not fucomannoglucuronans, determine the biological activities of sulfated polysaccharides from Laminaria saccharina brown seaweed. PLoS One 6, e17283. https://doi.org/10.1371/journal.pone.0017283
- Cumashi, A., Ushakova, N. A., Preobrazhenskaya, M. E., D'Incecco, A., Piccoli, A., Totani, L., Tinari, N., Morozevich, G. E., Berman, A. E., Bilan, M. I., Usov, A. I., Ustyuzhanina, N. E., Grachev, A. A., Sanderson, C. J., Kelly, M., Rabinovich, G. A., Iacobelli, S., Nifantiev, N. E. and Consorzio Interuniversitario Nazionale per la Bio-Oncologia, I. (2007) A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17, 541-552. https://doi.org/10.1093/glycob/cwm014
- Damonte, E. B., Matulewicz, M. C. and Cerezo, A. S. (2004) Sulfated seaweed polysaccharides as antiviral agents. Curr. Med. Chem. 11, 2399-2419. https://doi.org/10.2174/0929867043364504
- Fang, Q., Naidu, K. A., Naidu, K. A., Zhao, H., Sun, M., Dan, H. C., Nasir, A., Kaiser, H. E., Cheng, J. Q., Nicosia, S. V. and Coppola, D. (2006) Ascorbyl stearate inhibits cell proliferation and tumor growth in human ovarian carcinoma cells by targeting the PI3K/AKT pathway. Anticancer Res. 26, 203-209.
- Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. and Elledge, S. J. (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805-816. https://doi.org/10.1016/0092-8674(93)90499-G
- Hill, M. M. and Hemmings, B. A. (2002) Inhibition of protein kinase B/Akt. implications for cancer therapy. Pharmacol. Ther. 93, 243-251. https://doi.org/10.1016/S0163-7258(02)00193-6
- Itoh, H., Noda, H., Amano, H., Zhuaug, C., Mizuno, T. and Ito, H. (1993) Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae. Anticancer Res. 13, 2045-2052.
- Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R. C., Ghafoor, A., Feuer, E. J. and Thun, M. J. (2005) Cancer statistics, 2005. CA Cancer J. Clin. 55, 10-30. https://doi.org/10.3322/canjclin.55.1.10
- Jin, M. L., Park, S. Y., Kim, Y. H., Park, G., Son, H. J. and Lee, S. J. (2012) Suppression of alpha-MSH and IBMX-induced melanogenesis by cordycepin via inhibition of CREB and MITF, and activation of PI3K/Akt and ERK-dependent mechanisms. Int. J. Mol. Med. 29, 119-124.
- Koyanagi, S., Tanigawa, N., Nakagawa, H., Soeda, S. and Shimeno, H. (2003) Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochem. Pharmacol. 65, 173-179. https://doi.org/10.1016/S0006-2952(02)01478-8
- Lee, H., Kim, J. S. and Kim, E. (2012) Fucoidan from seaweed Fucus vesiculosus inhibits migration and invasion of human lung cancer cell via PI3K-Akt-mTOR pathways. PLoS One 7, e50624. https://doi.org/10.1371/journal.pone.0050624
- Osaki, M., Oshimura, M. and Ito, H. (2004) PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9, 667-676. https://doi.org/10.1023/B:APPT.0000045801.15585.dd
- Samowitz, W. S. and Slattery, M. L. (2002) Missense mismatch repair gene alterations, microsatellite instability, and hereditary nonpolyposis colorectal cancer. J. Clin. Oncol. 20, 3178; author reply 3178-3179. https://doi.org/10.1200/JCO.2002.20.14.3178
- Sarkar, F. H. and Li, Y. (2004) Cell signaling pathways altered by natural chemopreventive agents. Mutat. Res. 555, 53-64. https://doi.org/10.1016/j.mrfmmm.2004.04.015
- Sherr, C. J. (1994) G1 phase progression: cycling on cue. Cell 79, 551-555. https://doi.org/10.1016/0092-8674(94)90540-1
- Sherr, C. J. (1996) Cancer cell cycles. Science 274, 1672-1677. https://doi.org/10.1126/science.274.5293.1672
- Song, G., Ouyang, G. and Bao, S. (2005) The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med. 9, 59-71. https://doi.org/10.1111/j.1582-4934.2005.tb00337.x
- Vivanco, I. and Sawyers, C. L. (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2, 489-501. https://doi.org/10.1038/nrc839
- Xue, M., Ge, Y., Zhang, J., Liu, Y., Wang, Q., Hou, L. and Zheng, Z. (2013) Fucoidan inhibited 4T1 mouse breast cancer cell growth in vivo and in vitro via downregulation of Wnt/beta-catenin signaling. Nutr. Cancer 65, 460-468. https://doi.org/10.1080/01635581.2013.757628
- Xue, M., Ge, Y., Zhang, J., Wang, Q., Hou, L., Liu, Y., Sun, L. and Li, Q. (2012) Anticancer properties and mechanisms of fucoidan on mouse breast cancer in vitro and in vivo. PLoS One 7, e43483. https://doi.org/10.1371/journal.pone.0043483
Cited by
- Butyrate-mediated acquisition of chemoresistance by human colon cancer cells vol.36, pp.2, 2016, https://doi.org/10.3892/or.2016.4838
- The potential of brown-algae polysaccharides for the development of anticancer agents: An update on anticancer effects reported for fucoidan and laminaran vol.177, 2017, https://doi.org/10.1016/j.carbpol.2017.09.005
- Fucoidan induces Toll-like receptor 4-regulated reactive oxygen species and promotes endoplasmic reticulum stress-mediated apoptosis in lung cancer vol.7, 2017, https://doi.org/10.1038/srep44990
- Induction of Growth Inhibition and Apoptosis in Human Cancer Cells by a Brown Algae Extract vol.26, pp.5, 2016, https://doi.org/10.5352/JLS.2016.26.5.555
- Angiomodulators in cancer therapy: New perspectives vol.89, 2017, https://doi.org/10.1016/j.biopha.2017.02.071
- Induction of p53-Independent Apoptosis and G1 Cell Cycle Arrest by Fucoidan in HCT116 Human Colorectal Carcinoma Cells vol.15, pp.6, 2017, https://doi.org/10.3390/md15060154
- Crude Fucoidan Extracts Impair Angiogenesis in Models Relevant for Bone Regeneration and Osteosarcoma via Reduction of VEGF and SDF-1 vol.15, pp.6, 2017, https://doi.org/10.3390/md15060186
- Anticancer Effect of Fucoidan on DU-145 Prostate Cancer Cells through Inhibition of PI3K/Akt and MAPK Pathway Expression vol.14, pp.7, 2016, https://doi.org/10.3390/md14070126
- Fucoidans in Nanomedicine vol.14, pp.8, 2016, https://doi.org/10.3390/md14080145
- Mechanism study of endothelial protection and inhibits platelet activation of low molecular weight fucoidan from Laminaria japonica vol.15, pp.5, 2016, https://doi.org/10.1007/s11802-016-3016-7
- Comparison of anticancer activities of Korean Red Ginseng-derived fractions vol.41, pp.3, 2017, https://doi.org/10.1016/j.jgr.2016.11.001
- Fucoidan Does Not Exert Anti-Tumorigenic Effects on Uveal Melanoma Cell Lines vol.15, pp.7, 2017, https://doi.org/10.3390/md15070193
- A review about the development of fucoidan in antitumor activity: Progress and challenges vol.154, 2016, https://doi.org/10.1016/j.carbpol.2016.08.005
- Endoplasmic reticulum stress induces 5-fluorouracil resistance in human colon cancer cells vol.44, 2016, https://doi.org/10.1016/j.etap.2016.05.005
- Fucoidan inhibits angiogenesis induced by multiple myeloma cells vol.36, pp.4, 2016, https://doi.org/10.3892/or.2016.4987
- extracts vol.137, pp.1755-1315, 2018, https://doi.org/10.1088/1755-1315/137/1/012064
- Antiproliferative Activity of Glycosaminoglycan-Like Polysaccharides Derived from Marine Molluscs vol.16, pp.2, 2018, https://doi.org/10.3390/md16020063
- Fucoidan Structure and Activity in Relation to Anti-Cancer Mechanisms vol.17, pp.1, 2019, https://doi.org/10.3390/md17010032
- Fucoidan Exerts Anticancer Effects Against Head and Neck Squamous Cell Carcinoma In Vitro vol.23, pp.12, 2015, https://doi.org/10.3390/molecules23123302
- Macroalgal Polysaccharides in Biomimetic Nanodelivery Systems vol.25, pp.11, 2015, https://doi.org/10.2174/1381612825666190423155116
- Comparison of the Effects of Fucoidans on the Cell Viability of Tumor and Non-Tumor Cell Lines vol.17, pp.8, 2015, https://doi.org/10.3390/md17080441
- Clinical applications of fucoidan in translational medicine for adjuvant cancer therapy vol.8, pp.1, 2019, https://doi.org/10.1186/s40169-019-0234-9
- Isobolographic Analysis Demonstrates the Additive and Synergistic Effects of Gemcitabine Combined with Fucoidan in Uterine Sarcomas and Carcinosarcoma Cells vol.12, pp.1, 2015, https://doi.org/10.3390/cancers12010107
- Fucoidan Structure and Its Impact on Glucose Metabolism: Implications for Diabetes and Cancer Therapy vol.19, pp.1, 2015, https://doi.org/10.3390/md19010030
- Fucoidan-Supplemented Diet Potentiates Immune Checkpoint Blockage by Enhancing Antitumor Immunity vol.9, pp.None, 2021, https://doi.org/10.3389/fcell.2021.733246
- A comprehensive review on the health benefits and nutritional significance of fucoidan polysaccharide derived from brown seaweeds in human, animals and aquatic organisms vol.27, pp.3, 2015, https://doi.org/10.1111/anu.13233