DOI QR코드

DOI QR Code

A Cannabinoid Receptor Agonist N-Arachidonoyl Dopamine Inhibits Adipocyte Differentiation in Human Mesenchymal Stem Cells

  • Received : 2014.12.10
  • Accepted : 2015.02.26
  • Published : 2015.05.01

Abstract

Endocannabinoids can affect multiple cellular targets, such as cannabinoid (CB) receptors, transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and peroxisome proliferator-activated receptor ${\gamma}$($PPAR{\gamma}$). The stimuli to induce adipocyte differentiation in hBM-MSCs increase the gene transcription of the $CB_1$ receptor, TRPV1 and $PPAR{\gamma}$. In this study, the effects of three endocannabinoids, N-arachidonoyl ethanolamine (AEA), N-arachidonoyl dopamine (NADA) and 2-arachidonoyl glycerol (2-AG), on adipogenesis in hBM-MSCs were evaluated. The adipocyte differentiation was promoted by AEA whereas inhibited by NADA. No change was observed by the treatment of non-cytotoxic concentrations of 2-AG. The difference between AEA and NADA in the regulation of adipogenesis is associated with their effects on $PPAR{\gamma}$ transactivation. AEA can directly activate $PPAR{\gamma}$. The effect of AEA on $PPAR{\gamma}$ in hBM-MSCs may prevail over that on the $CB_1$ receptor mediated signal transduction, giving rise to the AEA-induced promotion of adipogenesis. In contrast, NADA had no effect on the $PPAR{\gamma}$ activity in the $PPAR{\gamma}$ transactivation assay. The inhibitory effect of NADA on adipogenesis in hBM-MSCs was reversed not by capsazepine, a TRPV1 antagonist, but by rimonabant, a $CB_1$ antagonist/inverse agonist. Rimonabant by itself promoted adipogenesis in hBM-MSCs, which may be interpreted as the result of the inverse agonism of the $CB_1$ receptor. This result suggests that the constantly active $CB_1$ receptor may contribute to suppress the adipocyte differentiation of hBM-MSCs. Therefore, the selective $CB_1$ agonists that are unable to affect cellular $PPAR{\gamma}$ activity inhibit adipogenesis in hBM-MSCs.

Keywords

References

  1. Bajzer, M., Olivieri, M., Haas, M. K., Pfluger, P. T., Magrisso, I. J., Foster, M. T., Tschop, M. H., Krawczewski-Carhuatanta, K. A., Cota, D. and Obici, S. (2011) Cannabinoid receptor 1 (CB1) antagonism enhances glucose utilisation and activates brown adipose tissue in diet-induced obese mice. Diabetologia 54, 3121-3131. https://doi.org/10.1007/s00125-011-2302-6
  2. Bermudez-Siva, F. J., Serrano, A., Diaz-Molina, F. J., Sanchez Vera, I., Juan-Pico, P., Nadal, A., Fuentes, E. and Rodriguez de Fonseca, F. (2006) Activation of cannabinoid CB1 receptors induces glucose intolerance in rats. Eur. J. Pharmacol. 531, 282-284. https://doi.org/10.1016/j.ejphar.2005.12.016
  3. Bouaboula, M., Hilairet, S., Marchand, J., Fajas, L., Le Fur, G. and Casellas, P. (2005) Anandamide induced PPARgamma transcriptional activation and 3T3-L1 preadipocyte differentiation. Eur. J. Pharmacol. 517, 174-181. https://doi.org/10.1016/j.ejphar.2005.05.032
  4. Cluny, N. L., Naylor, R. J., Whittle, B. A. and Javid, F. A. (2011) The effects of cannabidiolic acid and cannabidiol on contractility of the gastrointestinal tract of Suncus murinus. Arch. Pharm. Res. 34, 1509-1517. https://doi.org/10.1007/s12272-011-0913-6
  5. D'Eon, T. M., Pierce, K. A., Roix, J. J., Tyler, A., Chen, H. and Teixeira, S. R. (2008) The role of adipocyte insulin resistance in the pathogenesis of obesity-related elevations in endocannabinoids. Diabetes 57, 1262-1268. https://doi.org/10.2337/db07-1186
  6. Di Marzo V and Matias I. (2005) Endocannabinoid control of food intake and energy balance. Nat. Neurosci. 8, 585-589. https://doi.org/10.1038/nn1457
  7. Fong, T. M. and Heymsfield. S. B. (2009) Cannabinoid-1 receptor inverse agonists: current understanding of mechanism of action and unanswered questions. Int. J. Obes (Lond). 33, 947-955. https://doi.org/10.1038/ijo.2009.132
  8. Gary-Bobo, M., Elachouri, G., Scatton, B., Le Fur, G., Oury-Donat, F. and Bensaid, M. (2006) The cannabinoid CB1 receptor antagonist rimonabant (SR141716) inhibits cell proliferation and increases markers of adipocyte maturation in cultured mouse 3T3 F442A preadipocytes. Mol. Pharmacol. 69, 471-478.
  9. Huang, S. M., Bisogno, T., Trevisani, M., Al-Hayani, A., De Petrocellis, L., Fezza, F., Tognetto, M., Petros, T. J., Krey, J. F., Chu, C. J., Miller, J. D., Davies, S. N., Geppetti, P., Walker, J. M. and Di Marzo, V. (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc. Natl. Acad. Sci. U.S.A. 99, 8400-8405. https://doi.org/10.1073/pnas.122196999
  10. Kenakin, T. and Williams, M. (2014) Defining and characterizing drug/compound function. Biochem. Pharmacol. 87, 40-63. https://doi.org/10.1016/j.bcp.2013.07.033
  11. Klein, T. W. (2005) Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat. Rev. Immunol. 5, 400-411. https://doi.org/10.1038/nri1602
  12. Lindsay, R. S., Funahashi, T., Hanson, R. L., Matsuzawa, Y., Tanaka, S., Tataranni, P. A., Knowler, W. C. and Krakoff, J. (2002) Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 360, 57-58. https://doi.org/10.1016/S0140-6736(02)09335-2
  13. Liu, J., Zhou, L., Xiong, K., Godlewski, G., Mukhopadhyay, B., Tam, J., Yin, S., Gao, P., Shan, X., Pickel, J., Bataller, R., O'Hare, J., Scherer, T., Buettner, C. and Kunos, G. (2012) Hepatic cannabinoid receptor-1 mediates diet-induced insulin resistance via inhibition of insulin signaling and clearance in mice. Gastroenterology 142, 1218-1228. https://doi.org/10.1053/j.gastro.2012.01.032
  14. Milligan, G. (2003) Constitutive activity and inverse agonists of G protein-coupled receptors: a current perspective. Mol. Pharmacol. 64, 1271-1276. https://doi.org/10.1124/mol.64.6.1271
  15. O'Sullivan, S. E. and Kendall, D. A. (2010) Cannabinoid activation of peroxisome proliferator-activated receptors: potential for modulation of inflammatory disease. Immunobiology 215, 611-616. https://doi.org/10.1016/j.imbio.2009.09.007
  16. Pacher, P. and Hasko, G. (2008) Endocannabinoids and cannabinoid receptors in ischaemia-reperfusion injury and preconditioning. Br. J. Pharmacol. 153, 252-262. https://doi.org/10.1038/sj.bjp.0707582
  17. Pertwee, R. G. (2005) Inverse agonism and neutral antagonism at cannabinoid CB1 receptors. Life Sci. 76, 1307-1324. https://doi.org/10.1016/j.lfs.2004.10.025
  18. Pertwee, R. G., Howlett, A. C., Abood, M. E., Alexander, S. P., Di Marzo, V., Elphick, M. R., Greasley, P. J., Hansen, H. S., Kunos, G., Mackie, K., Mechoulam, R. and Ross, R. A. (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol. Rev. 62, 588-631. https://doi.org/10.1124/pr.110.003004
  19. Shin, D. W., Kim, S. N., Lee, S. M., Lee, W., Song, M. J., Park, S. M., Lee, T. R., Baik, J. H., Kim, H. K., Hong, J. H. and Noh, M. (2009) (-)-Catechin promotes adipocyte differentiation in human bone marrow mesenchymal stem cells through PPAR gamma transactivation. Biochem. Pharmacol. 77, 125-133. https://doi.org/10.1016/j.bcp.2008.09.033
  20. Silvestri, C. and Di Marzo, V. (2013) The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab. 17, 475-90. https://doi.org/10.1016/j.cmet.2013.03.001
  21. Song, D., Bandsma, R. H., Xiao, C., Xi, L., Shao, W., Jin, T. and Lewis, G. F. (2011) Acute cannabinoid receptor type 1 (CB1R) modulation influences insulin sensitivity by an effect outside the central nervous system in mice. Diabetologia 54, 1181-1189. https://doi.org/10.1007/s00125-011-2082-z
  22. Tam, J., Cinar, R., Liu, J., Godlewski, G., Wesley, D., Jourdan, T., Szanda, G., Mukhopadhyay, B., Chedester, L., Liow, J. S., Innis, R. B., Cheng, K., Rice, K. C., Deschamps, J. R., Chorvat, R. J., McElroy, J. F. and Kunos, G. (2012) Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance. Cell Metab. 16, 167-179. https://doi.org/10.1016/j.cmet.2012.07.002
  23. Tam, J., Godlewski, G., Earley, B. J., Zhou, L., Jourdan, T., Szanda, G., Cinar, R. and Kunos, G. (2014) Role of adiponectin in the metabolic effects of cannabinoid type 1 receptor blockade in mice with dietinduced obesity. Am. J. Physiol. Endocrinol. Metab. 306, 457-468. https://doi.org/10.1152/ajpendo.00489.2013
  24. Teixeira, D., Pestana, D., Faria, A., Calhau, C., Azevedo, I., Monteiro, R. (2010) Modulation of adipocyte biology by ${\Delta}^9$-tetrahydrocannabinol. Obesity 18, 2077-2085. https://doi.org/10.1038/oby.2010.100
  25. Viscomi, M. T., Oddi, S., Latini, L., Pasquariello, N., Florenzano, F., Bernardi, G., Molinari, M. and Maccarrone, M. (2009) Selective CB2 receptor agonism protects central neurons from remote axotomy-induced apoptosis through the PI3K/Akt pathway. J. Neurosci. 29, 4564-4570. https://doi.org/10.1523/JNEUROSCI.0786-09.2009
  26. Wiley, J. L., Marusich, J. A., Zhang, Y., Fulp, A., Maitra, R., Thomas, B. F. and Mahadevan, A. (2012) Structural analogs of pyrazole and sulfonamide cannabinoids: effects on acute food intake in mice. Eur. J. Pharmacol. 695, 62-70. https://doi.org/10.1016/j.ejphar.2012.08.019

Cited by

  1. An update on PPAR activation by cannabinoids vol.173, pp.12, 2016, https://doi.org/10.1111/bph.13497
  2. Endogenous 2-Arachidonoylglycerol Alleviates Cyclooxygenases-2 Elevation-Mediated Neuronal Injury From SO2Inhalation via PPARγ Pathway vol.147, pp.2, 2015, https://doi.org/10.1093/toxsci/kfv147
  3. A Review of the Therapeutic Antitumor Potential of Cannabinoids 2017, https://doi.org/10.1089/acm.2017.0016
  4. N-Oleoyl glycine, a lipoamino acid, stimulates adipogenesis associated with activation of CB1 receptor and Akt signaling pathway in 3T3-L1 adipocyte vol.466, pp.3, 2015, https://doi.org/10.1016/j.bbrc.2015.09.046
  5. N-Arachidonoyl Dopamine: A Novel Endocannabinoid and Endovanilloid with Widespread Physiological and Pharmacological Activities vol.2, pp.1, 2017, https://doi.org/10.1089/can.2017.0015
  6. The endocannabinoid receptors CB1 and CB2 affect the regenerative potential of adipose tissue MSCs vol.389, pp.1, 2015, https://doi.org/10.1016/j.yexcr.2020.111881
  7. Endocannabinoids increase human adipose stem cell differentiation and growth factor secretion in vitro vol.15, pp.1, 2015, https://doi.org/10.1002/term.3152
  8. Bioactive Lipids in MSCs Biology: State of the Art and Role in Inflammation vol.22, pp.3, 2015, https://doi.org/10.3390/ijms22031481