DOI QR코드

DOI QR Code

Study of Lipoprotein Lipase Inhibitory Activity of Anti-obesity Herb Extracts

항비만소재의 lipoprotein lipase 억제 작용 연구

  • Lee, Sung Mee (Department of Bio-Health Technology, Kangwon National University) ;
  • Kang, Yun Hwan (Well-being Bioproducts RIC, Kangwon National University) ;
  • Kim, Kyoung Kon (Department of Bio-Health Technology, Kangwon National University) ;
  • Kim, Tae Woo (Well-being Bioproducts RIC, Kangwon National University) ;
  • Choe, Myeon (Department of Bio-Health Technology, Kangwon National University)
  • 이성미 (강원대학교 생명건강공학과) ;
  • 강윤환 (강원대학교 강원웰빙특산물산업화지역혁신센터) ;
  • 김경곤 (강원대학교 생명건강공학과) ;
  • 김태우 (강원대학교 강원웰빙특산물산업화지역혁신센터) ;
  • 최면 (강원대학교 생명건강공학과)
  • Received : 2014.09.24
  • Accepted : 2014.12.23
  • Published : 2015.04.30

Abstract

In this study, we evaluated the lipoprotein lipase (LPL) inhibitory activity of 11 water extracts derived from Cinnamomum cassia Blume, Sarcodon aspratus, Cordyceps militaris, Crataegus pinnatifida Bunge, Corni fructus, Allium cepa, Coix lacryma-jobi, Plantago asiatica L., Lentinus edodes, Rosa rugosa, and Foeniculum fructus. The results of the LPL secretion and activity assay showed Sarcodon aspratus (NE) extract have an LPL secretion inhibitory acitivity. The cause of reduction in LPL secretion after NE treatment was investigated using molecular biology methods. NE treatment affected the LPL content in cells, but did not affect LPL mRNA expression. It also increased the mRNA expression level of sortilin-related receptor LDLR class A (SorLA), a receptor that induces endocytosis and intracellular trafficking of LPL. Finally, cell fractionation revealed that NE treatment induced the expression of CCAAT-enhancer-binding protein beta ($C/EBP{\beta}$), a SorLA transcription factor, in the nuclei of 3T3-L1 adipocytes. These results show that NE's anti-obesity effect involves inhibition of LPL secretion through $C/EBP{\beta}$-mediated induction of SorLA expression.

본 연구에는 항비만소재로 연구되어진 11종의 소재를 대상으로 lipoprotein lipase (LPL)의 억제효능을 확인하고자 배양배지내 LPL의 함량과 LPL 효소활성을 측정하였다. 그 결과 3T3-L1 adipocyte에서 LPL의 분비를 억제하는 소재로 능이추출물(NE)을 선택할 수 있었다. 선택된 NE의 폴리페놀과 플라보노이드 함량을 측정한 결과 $16.61{\pm}0.44mg/g$$6.58{\pm}0.01mg/g$이 각각 확인되었다. NE의 LPL 분비억제기작을 확인하기위해 먼저 세포내 LPL단백질의 함량과 mRNA 발현을 확인하였다. 그 결과 함량이 감소했던 배양배지와는 다르게 NE를 처리한 3T3-L1 adipocyte의 세포내 LPL은 유의하게 증가한 것을 확인할 수 있었으며 mRNA의 발현에는 영향이 없음을 관찰할 수 있었다. 이를 바탕으로 생성된 LPL 단백질의 exocytosis에 문제가 발생했을 것으로 유추하고 다양한 단백질 이동 관련 유전자의 발현을 확인하였다. 그 결과 LPL의 이동과 분해에 관여하여 세포내 LPL의 활성을 조절하는 것으로 알려진 SorLA의 발현이 증가하는 것을 확인하고 이를 조절하는 transcription factor의 발현과 nuclear로의 이동에 NE가 미치는 영향을 검토하였다. 그 결과 NE를 처리함으로써 SorLA promoter에 작용하는 $C/EBP{\beta}$의 단백질 발현이 nuclear에서 증가하는 것을 확인할 수 있었다. 본 연구를 통해 NE가 SorLA 유전자의 transcription factor인 $C/EBP{\beta}$의 단백질 발현을 nuclear에서 증가시킴으로서 결과적으로 LPL의 분비억제가 가능함을 확인할 수 있었으며 이는 NE의 항비만 효과기전을 설명하는 기초자료를 제공하는 것이라 사료된다.

Keywords

References

  1. Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. Am. J. Physiol.-Endoc. M. 297: E271-E288 (2009)
  2. Braun JE, Severson DL. Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem. J. 287: 337-347 (1992) https://doi.org/10.1042/bj2870337
  3. Kopelman PG. Obesity as a medical problem. Nature 404: 635-643 (2000)
  4. Fernandez-Sanchez A, Madrigal-Santillan E, Bautista M, Esquivel-Soto J, Morales-Gonzalez A, Esquivel-Chirino C, Durante-Montiel I, Sanchez-Rivera G, Valadez-Vega C, Morales-Gonzalez JA. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci. 12: 3117-3132 (2011) https://doi.org/10.3390/ijms12053117
  5. Moreno DA, Ilic N, Poulev A, Brasaemle DL, Fried SK, Raskin I. Inhibitory effects of grape seed extract on lipases. Nutrition 19: 876-879 (2003) https://doi.org/10.1016/S0899-9007(03)00167-9
  6. Baek JM, Lee JS, Kim KK, Kim TW, Kim DJ, Kim CA, Tsutomu K, Ochir S, Lee KY, Park CH, Lee YJ, Choe M. Inhibitory effects of Capsicum annuum L. water extracts on lipoprotein lipase activity in 3T3-L1 cells. Nutr. Res. Pract. 7: 96-102 (2013) https://doi.org/10.4162/nrp.2013.7.2.96
  7. Park SJ, Lee IS, Lee SP, Yu MH. Inhibition of adipocyte differentiation and adipogenesis by supercritical fluid extracts and marc from Cinnamomum verum. J. Life Sci. 23: 510-517 (2013) https://doi.org/10.5352/JLS.2013.23.4.510
  8. Kim YJ, Kim BH, Lee SY, Kim MS, Park CS, Rhee MS, Lee KH, Kim DS. Screening of medicinal plants for development of functional food ingredients with anti-obesity. J. Korean Soc. Appl. Biol. Chem. 49: 221-226 (2006)
  9. Han XQ, Chai XY, Jia YM, Han CX, Tu PF. Structure elucidation and immunological activity of a novel polysaccharide from the fruit bodies of an edible mushroom, Sarcodon aspratus (Berk.) S. Ito. Int. J. Biol. Macromol. 47: 420-424 (2010) https://doi.org/10.1016/j.ijbiomac.2010.05.021
  10. Lee KS, Kim JB. Effects of the Sarcodon aspratus on the high level of blood lipid and obesity induced by high fat-diet in rat. J. Life Sci. 19: 1265-1270 (2009) https://doi.org/10.5352/JLS.2009.19.9.1265
  11. Koo BS, Lee MS. Effects of Cordyceps militaris extract powder on plasma lipids and glucose in rats. J. Korean Soc. Food Cult. 19: 217-222 (2004)
  12. Ban SS, Yoon HD, Shin OC, Shin YJ, Park CS, Park JH, Seo BI. The effects of Artemisiae capillaris, Ponciri fructus and Cartaegi fructus in obese rats induced by high fat diet. Korean J. Herbology 21: 55-67 (2006)
  13. Lim JM, Li GZ, Chai OH, Song CH. Inhibitory effect of Corni fructus on compound 48/80-induced mast cell activation and vascular permeability. Korean J. Phys. Anthropol. 17: 19-30 (2004)
  14. Shin JH, Cha GY, Kim HJ, Hwang JH, Han KH, Seo HJ, Shin TS, Oh SJ, Kim JD. Exmination of anti-obesity effect of regional special natural products of Anthrisci radix, Psoraleae semen, Siegesbeckiae herba and Corni fructus. KSBB J. 24: 549-555 (2009)
  15. Kang WY, Kim MY, Jin JY, Yang HK, Hong HJ, Kim DG, Han CH, Lee YJ. Anti-obesity effects of onion juice in high fat dietinduced obese rats. Korean J. Vet. Res. 50: 1-10 (2010)
  16. Yoshinari O, Shiojima Y, Igarashi K. Anti-obesity effects of onion extract in zucker diabetic fatty rats. Nutrients 4: 1518-1526 (2012) https://doi.org/10.3390/nu4101518
  17. Kim SG, An GH, Yoon SW, Lee YC, Ha SD. A study on dietary supplement to reduce obesity by the mechanism of decreasing lipid and carbohydrate absorption. Korean J. Food Sci. Technol. 35: 519-526 (2003)
  18. Lee HJ, Chung MJ, Kim DJ, Choe M. Effects of Oenanthe javanica, Coicis lachryma-jobi L. var., and Plantaginis asiatica L. water extracts on activities of key enzymes on lipid metabolism. J. Korean Soc. Food Sci. Nutr. 38: 1516-1521 (2009) https://doi.org/10.3746/jkfn.2009.38.11.1516
  19. Lee MR, Oh DS, Wee AJ, Yun BS, Jang SA, Sung CK. Antiobesity effects of Lentinus edodes on obese mice induced by high fat diet. J. Korean Soc. Food Sci. Nutr. 43: 194-199 (2014) https://doi.org/10.3746/jkfn.2014.43.2.194
  20. Jung HJ, Nam JH, Choi JW, Lee KT, Park HJ. 19a-Hydroxyursane-type triterpenoids: Antinociceptive anti-inflammatory principles of the roots of Rosa rugosa. Biol. Pharm. Bull. 28: 101-104 (2005) https://doi.org/10.1248/bpb.28.101
  21. Park HJ, Nam JH, Jung HJ, Lee MS, Lee KT, Jung MH, Choi JW. Inhibitory effect of euscaphic acid and tormentic acid from the roots of Rosa rugosa on high fat diet-induced obesity in the rat. Kor. J. Pharmacogn. 36: 324-331 (2005)
  22. Seo DJ, Kim JM, Kim TH, Baek JM, Kim TW, Kim HS, Choe M. Anti-obesity effects of Foeniculum fructus water extract. J. Korean Soc. Food Sci. Nutr. 39: 1604-1610 (2010) https://doi.org/10.3746/jkfn.2010.39.11.1604
  23. Oh SD, Kim M, Min BI, Choi GS, Kim SK, Bae H, Kang C, Kim DG, Park BJ, Kim CK. Effect of achyranthes bidentata blume on 3T3-L1 adipogenesis and rats fed with a high-fat diet. Evid.-Based Compl. Alt. 2014: Article ID 158018 (2014)
  24. Feng Z, Hai-ning Y, Xiao-man C, Zun-chen W, Sheng-rong S, Das UN. Effect of yellow capsicum extract on proliferation and differentiation of 3T3-L1 preadipocytes. Nutrition 30: 319-325 (2014) https://doi.org/10.1016/j.nut.2013.08.003
  25. Lee SM, Kang YH, Kim DJ, Kim KK, Lim JG, Kim TW, Choe M. Comparison of antioxidant and α-glucosidase inhibition activities among water extracts and sugar immersion extracts of green pepper, purslane and shiitake. J. East Asian Soc. Dietary Life 24: 101-108 (2014)
  26. Goldberg IJ, Merkel M. Lipoprotein lipase: Physiology, biochemistry, and molecular biology. Front. Biosci. 6: D388-405 (2001) https://doi.org/10.2741/Goldberg
  27. Bravo L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 56: 317-333 (1998)
  28. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 79: 727-747 (2004)
  29. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR. Screening of the antioxidant activity of some medicinal plants. Korean J. Food Sci. Technol. 36: 333-338 (2004)
  30. Kim EJ, Choi JY, Yu MR, Kim MY, Lee SH, Lee BH. Total polyphenols, total flavonoid contents, and antioxidant activity of korean natural and medicinal plants. Korean J. Food Sci. Technol. 44: 337-342 (2012) https://doi.org/10.9721/KJFST.2012.44.3.337
  31. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013: Article ID 162750 (2013)
  32. Lee HJ, Do JR, Jung SK, Kim HK. Physiological properties of Sarcodon aspratus extracts by ethanol concentration. J. Korean Soc. Food Sci. Nutr. 43: 656-660 (2014) https://doi.org/10.3746/jkfn.2014.43.5.656
  33. Qi Y, Zhao X, Lim YI, Park KY. Antioxidant and anticancer effects of edible and medicinal mushrooms. J. Korean Soc. Food Sci. Nutr. 42: 655-662 (2013) https://doi.org/10.3746/jkfn.2013.42.5.655
  34. Yoshikawa M, Shimoda H, Nishida N, Takada M, Matsuda H. Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats. J. Nutr. 132: 1819-1824 (2002)
  35. Pak-Dek MS, Abdul-Hamid A, Osman A, Soh CS. Inhibitory effect of morinda citrifolia L. On lipoprotein lipase activity. J. Food Sci. 73: C595-C598 (2008) https://doi.org/10.1111/j.1750-3841.2008.00929.x
  36. Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE. SNAP receptors implicated in vesicle targeting and fusion. Nature 362: 318-324 (1993) https://doi.org/10.1038/362318a0
  37. Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiol. Rev. 81: 153-208 (2001)
  38. Hermey G. The Vps10p-domain receptor family. Cell Mol. Life Sci. 66: 2677-2689 (2009) https://doi.org/10.1007/s00018-009-0043-1
  39. Nielsen MS, Jacobsen C, Olivecrona G, Gliemann J, Petersen CM. Sortilin/neurotensin receptor-3 binds and mediates degradation of lipoprotein lipase. J. Biol. Chem. 274: 8832-8836 (1999) https://doi.org/10.1074/jbc.274.13.8832
  40. Klinger SC, Glerup S, Raarup MK, Mari MC, Nyegaard M, Koster G, Prabakaran T, Nilsson SK, Kjaergaard MM, Bakke O, Nykjær A, Olivecrona G, Petersen CM, Nielsen MS. SorLA regulates the activity of lipoprotein lipase by intracellular trafficking. J. Cell Sci. 124: 1095-1105 (2011) https://doi.org/10.1242/jcs.072538
  41. Hirayama S, Bujo H, Yamazaki H, Kanaki T, Takahashi K, Kobayashi J, Schneider WJ, Saito Y. Differential expression of LR11 during proliferation and differentiation of cultured neuroblastoma cells. Biochem. Bioph. Res. Co. 275: 365-373 (2000) https://doi.org/10.1006/bbrc.2000.3312