DOI QR코드

DOI QR Code

Cold Plasma Treatment Effects on the Physicochemical and Biodegradable Properties of a Corn Biomass-containing Polyester Film

옥수수 바이오매스를 함유한 폴리에스터 필름의 물리 화학적 특성과 생분해 특성에 대한 콜드 플라즈마 처리의 영향

  • Song, Ah Young (Department of Food Science and Technology, Seoul Women's University) ;
  • Oh, Yoon Ah (Department of Food Science and Technology, Seoul Women's University) ;
  • Oh, Se Jun (CAE Solution Team, Altsoft Inc.) ;
  • Min, Sea Cheol (Department of Food Science and Technology, Seoul Women's University)
  • 송아영 (서울여자대학교 식품공학과) ;
  • 오윤아 (서울여자대학교 식품공학과) ;
  • 오세준 ((주)알트소프트 CAE Solution Team) ;
  • 민세철 (서울여자대학교 식품공학과)
  • Received : 2015.01.14
  • Accepted : 2015.02.03
  • Published : 2015.04.30

Abstract

The effects of cold plasma (CP) treatments on the physicochemical and biodegradable properties of a corn biomass-containing polyester (CBPE) film were studied. The CBPE film was treated with CP generated by $N_2$, $O_2$, He, Ar, or dry air at 400-900 W and 667 Pa for 10-40 min. The glass transition temperature of the CBPE film ($-30.2--28.6^{\circ}C$) was not affected by the CP treatment, while the elastic modulus and water vapor permeability decreased (p<0.05). The ink printability was improved by the treatment and the improved printability was maintained during storage for 56 days at room temperature. Roughness of the film increased after treatments and the level of roughness appeared to increase during storage. Heat and microbial biodegradability of the CBPE film was improved by the air-CP treatment (p<0.05). These results have demonstrated the potential of applying CP treatments to improve the flexibility, printability, and biodegradability of CBPE films.

CP 처리의 CBPE 필름의 물리화학적 특성 및 생분해 특성에 대한 영향을 연구하였다. CP 처리는 CBPE 필름의 인장 강도, 신장률, 그리고 광투과도와 같은 물리적 특성에는 영향을 주지 않았으나, air-CP 처리는 CBPE 필름의 유연성, 수분 방벽 특성, 그리고 인쇄적성을 향상시켰다. Air-CP 처리는 저장 중 CBPE 필름 표면의 조도와 O와 N 원소를 포함한 작용기의 양을 증가시켰고, 인쇄적성, 열분해성, 그리고 미생물 분해성을 향상시켰다. 본 연구에서 CP 처리 후 CBPE 필름 표면에서 보여지는 노화 현상을 XPS 결과를 통해 확인할 수 있었다. 본 연구는 CP 처리가 CBPE 필름을 비롯하여 다른 생분해성 식품 포장재의 물리적 특성과 생분해성을 향상시킬 수 있는 기술로서 적용될 수 있다는 가능성을 보여주었다.

Keywords

References

  1. Kale G, Auras R, Singh SP. Comparison of the degradability of poly (lactide) packages in composting and ambient exposure conditions. Packag. Technol. Sci. 20: 49-70 (2007) https://doi.org/10.1002/pts.742
  2. Ammala A, Bateman S, Dean K, Petinakis E, Sangwan P, Wong S, Yuan Q, Yu L, Patrick C, Leong KH. An overview of degradable and biodegradable polyolefins. Prog. Polym. Sci. 36: 1015-1049 (2011) https://doi.org/10.1016/j.progpolymsci.2010.12.002
  3. Bajpai PK, Singh I, Madaan J. Development and characterization of PLA-based green composites: A review. J. Thermoplast. Compos. 27: 52-81 (2014) https://doi.org/10.1177/0892705712439571
  4. You YS. Bioplastics. pp. 13-16. In: Bio Magazine. You YS (ed). Bio Material Packaging Association, Hwaseong, Korea (2012)
  5. Inagaki N, Narushim K, Tuchida N, Miyazaki K. Surface characterization of plasmamodified poly (ethylene terephthalate) film surfaces. J. Polym. Sci. Pol. Phys. 42: 3727-3740 (2004) https://doi.org/10.1002/polb.20234
  6. Pankaj SK, Bueno-Ferrer C, Misra NN, Milosavljeviæ V, O'Donnell CP, Bourke P, Keener KM, Cullen PJ. Applications of cold plasma technology in food packaging. Trends Food Sci. Tech. 35: 5-17 (2014) https://doi.org/10.1016/j.tifs.2013.10.009
  7. Morent R, De Geyter N, Desmet T, Dubruel P, Leys C. Plasma surface modification of biodegradable polymers: A review. Plasma Process. Polym. 8: 171-190 (2011) https://doi.org/10.1002/ppap.201000153
  8. Adler HJ, Fischer P, Heller A, Jansen I, Kuckling D, Komber H, Lehmann D, Piontek J, Pleul D, Simon F. Trends in polymer chemistry 1998. Acta Polym. 50: 232-239 (1999) https://doi.org/10.1002/(SICI)1521-4044(19990701)50:7<232::AID-APOL232>3.0.CO;2-D
  9. Chong MSK, Lee CN, Teoh SH. Characterization of smooth muscle cells on poly ($\varepsilon$-caprolactone) films. Mater. Sci. Eng. C 27: 309-312 (2007) https://doi.org/10.1016/j.msec.2006.03.008
  10. Desmet T, Morent R, De Geyter N, Leys C, Schacht E, Dubruel P. Nonthermal plasma technology as a versatile strategy for polymeric biomaterials surface modification: A review. Biomacromolecules 10: 2351-2378 (2009) https://doi.org/10.1021/bm900186s
  11. Desai SM, Singh RP. Surface modification of polyethylene. Adv. Polym. Sci. 169: 231-294 (2004) https://doi.org/10.1007/b13524
  12. Grace JM, Gerenser LJ. Plasma treatment of polymers. J. Disper. Sci. Technol. 24: 305-341 (2003) https://doi.org/10.1081/DIS-120021793
  13. Morent R, De Geyter N, Gengembre L, Leys C, Payen E, Van Vlierberghe S, Schacht E. Surface treatment of a polypropylene film with a nitrogen DBD at medium pressure. Eur. Phys. J. Appl. Phys. 43: 289-294 (2008) https://doi.org/10.1051/epjap:2008076
  14. Riccardi C, Barni R, Selli E, Mazzone G, Massafra MR, Marcandalli B, Poletti G. Surface modification of poly (ethylene terephthalate) fibers induced by radio frequency air plasma treatment. Appl. Surf. Sci. 211: 386-397 (2003) https://doi.org/10.1016/S0169-4332(03)00265-4
  15. Paynter RW. XPS studies of the modification of polystyrene and polyethyleneterephthalate surfaces by oxygen and nitrogen plasmas. Surf. Interface Anal. 26: 674-681 (1998) https://doi.org/10.1002/(SICI)1096-9918(199808)26:9<674::AID-SIA414>3.0.CO;2-5
  16. Inagaki N, Narushima K, Lim SK. Effects of aromatic groups in polymer chains on plasma surface modification. J. Appl. Polym. Sci. 89: 96-103 (2003) https://doi.org/10.1002/app.12160
  17. Pankaj SK, Bueno-Ferrer C, Misra NN, O'Neill L, Jimenez A, Bourke P, Cullen PJ. Characterization of polylactic acid films for food packaging as affected by dielectric barrier discharge atmospheric plasma. Innov. Food Sci. Emerg. 21: 107-113 (2014) https://doi.org/10.1016/j.ifset.2013.10.007
  18. Kim JE, Lee DU, Min SC. Microbial decontamination of red pepper powder by cold plasma. Food Microbiol. 38: 128-136 (2014) https://doi.org/10.1016/j.fm.2013.08.019
  19. Nath A, Chattopadhyay PK, Majumdar GC. High temperature short time air puffed ready-to-eat (RTE) potato snacks: Process parameter optimization. J. Food Eng. 80: 770-780 (2007) https://doi.org/10.1016/j.jfoodeng.2006.07.006
  20. ASTM. Standard test method for tensile properties of thin plastic sheeting. D822-01. American Society for Testing and Materials, Philadelphia, PA, USA (1997)
  21. Kim D, Min SC. Trout skin gelatinbased edible film development. J. Food Sci. 77: E240- E246 (2012) https://doi.org/10.1111/j.1750-3841.2012.02880.x
  22. McHugh TH, AvenaBustillos R, Krochta JM. Hydrophilic edible films: modified procedure for water vapor permeability and explanation of thickness effects. J. Food Sci. 58: 899-903 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb09387.x
  23. Jana T, Roy BC, Ghosh R, Maiti S. Biodegradable film. IV. Printability study on biodegradable film. J. Appl. Polym. Sci. 79: 1273-1277 (2001) https://doi.org/10.1002/1097-4628(20010214)79:7<1273::AID-APP150>3.0.CO;2-L
  24. Chung MS, Lee WH, You YS, Kim HY, Park KM. Manufacturing multi-degradable food packaging films and their degradibility. Korean J. Food Sci. Technol. 35: 877-883 (2003)
  25. Chiellini E, Corti A, D'ntone S, Baciu R. Oxo-biodegradable carbon backbone polymers-oxidative degradation of polyethylene under accelerated test conditions. Polym. Degrad. Stabil. 91: 2739-2747 (2006) https://doi.org/10.1016/j.polymdegradstab.2006.03.022
  26. ASTM. Standard practice for determining resistance of synthetic polymeric materials to fungi. G21-13. American Society for Testing and Materials, Philadelphia, PA, USA (2013)
  27. Fields RD, Rodriguez F, Finn RK. Microbial degradation of polyesters: Polycaprolactone degraded by P. pullulans. J. Appl. Polym. Sci. 18: 3571-3579 (1974) https://doi.org/10.1002/app.1974.070181207
  28. Almazan-Almazan MC, Paredes JI, Perez-Mendoza M, Domingo-Garcia M, Lopez-Garzon FJ, Martinez-Alonso A, Tascon JMD. Effects of oxygen and carbon dioxide plasmas on the surface of poly (ethylene terephthalate). J. Colloid Interf. Sci. 287: 57-66 (2005) https://doi.org/10.1016/j.jcis.2005.01.072
  29. Zaikov GE, Iordanskii AP, Markin VS. Diffusion of Electrolytes in Polymers. Vol. II. VSP BV, Utrecht, Neterhlands. pp. 250-262 (1988)
  30. Merche D, Vandencasteele N, Reniers F. Atmospheric plasmas for thin film deposition: A critical review. Thin Solid Films 520: 4219-4236 (2012) https://doi.org/10.1016/j.tsf.2012.01.026
  31. Donegan M, Milosavljeviæ V, Dowling DP. Activation of PET using an RF atmospheric plasma system. Plasma Chem. Plasma P. 33: 941-957 (2013) https://doi.org/10.1007/s11090-013-9474-4
  32. Kristo E, Biliaderis CG. Physical properties of starch nanocrystalreinforced pullulan films. Carbohyd. Polym. 68: 146-158 (2007) https://doi.org/10.1016/j.carbpol.2006.07.021
  33. Kiatkamjornwong S, Sonsuk M, Wittayapichet S, Prasassarakich P, Vejjanukroh PC. Degradation of styrene-g-cassava starch filled polystyrene plastics. Polym. Degrad. Stabil. 66: 323-335 (1999) https://doi.org/10.1016/S0141-3910(99)00082-8
  34. He Q, Liu Z, Xiao P, Liang R, He N, Lu Z. Preparation of hydrophilic poly (dimethylsiloxane) stamps by plasma-induced grafting. Langmuir 19: 6982-6986 (2003) https://doi.org/10.1021/la020785h
  35. Hirotsu T, Nakayama K, Tsujisaka T, Mas A, Schue F. Plasma surface treatments of meltextruded sheets of poly (Llactic acid). Polym. Eng. Sci. 42: 299-306 (2002) https://doi.org/10.1002/pen.10949
  36. Pankaj SK, Bueno-Ferrer C, Misra NN, O'Neill L, Tiwari BK, Bourke P, Cullen PJ. Physicochemical characterization of plasmatreated sodium caseinate film. Food Res. Int. 66: 438-444 (2014) https://doi.org/10.1016/j.foodres.2014.10.016
  37. Esena P, Zanini S, Riccardi C. Plasma processing for surface optical modifications of PET films. Vacuum 82: 232-235 (2007) https://doi.org/10.1016/j.vacuum.2007.07.054
  38. Lehocky M, Mraeek A. Improvement of dye adsorption on synthetic polyester fibers by low temperature plasma pre-treatment. Czech. J. Phys. 56: B1277-B1282 (2006) https://doi.org/10.1007/s10582-006-0362-5
  39. Rosa DS, Lotto NT, Lopes DR, Guedes CGF. The use of roughness for evaluating the biodegradation of poly-${\beta}$-(hydroxybutyrate) and poly-${\beta}$-(hydroxybutyrate-co-${\beta}$-valerate). Polym. Test. 23: 3-8 (2004) https://doi.org/10.1016/S0142-9418(03)00042-4
  40. Bacri J, Raffanel S. Calculation of some thermodynamic properties of air plasmas: Internal partition functions, plasma composition, and thermodynamic functions. Plasma Chem. Plasma P. 7: 53-87 (1987) https://doi.org/10.1007/BF01015999
  41. Vesel A, Junkar I, Cvelbar U, Kovac J, Mozetic M. Surface modification of polyester by oxygenand nitrogenplasma treatment. Surf. Interface Anal. 40: 1444-1453 (2008) https://doi.org/10.1002/sia.2923
  42. Vesel A, Mozetic M. Surface modification and ageing of PMMA polymer by oxygen plasma treatment. Vacuum 86: 634-637 (2012) https://doi.org/10.1016/j.vacuum.2011.07.005
  43. Wrobel AM, Kryszewski M, Rakowski W, Okoniewski M, Kubacki Z. Effect of plasma treatment on surface structure and properties of polyester fabric. Polymer 19: 908-912 (1978) https://doi.org/10.1016/0032-3861(78)90197-0
  44. Tokiwa Y, Suzuki T. Hydrolysis of polyesters by lipases. Nature 270: 76-78 (1977) https://doi.org/10.1038/270076a0
  45. Tokiwa Y, Calabia BP. Biodegradability and biodegradation of poly (lactide). Appl. Microbiol. Biot. 72: 244-251 (2006) https://doi.org/10.1007/s00253-006-0488-1

Cited by

  1. Cold Plasma Treatment Application to Improve Microbiological Safety of Infant Milk Powder and Onion Powder vol.47, pp.4, 2015, https://doi.org/10.9721/KJFST.2015.47.4.486