References
- Iwashina T. The structure and distribution of the flavonoids in plants. J. Plant Res. 113: 287-299 (2000) https://doi.org/10.1007/PL00013940
- Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry 55: 481-504 (2000) https://doi.org/10.1016/S0031-9422(00)00235-1
- Mattila P, Hellstrom J. Phenolic acids in potatoes, vegetables, and some of their products. J. Food Compos. Anal. 20: 152-160 (2007) https://doi.org/10.1016/j.jfca.2006.05.007
- Crozier A, Lean MEJ, McDonald MS, Black C. Quantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce and celery. J. Agr. Food Chem. 45: 590-595 (1997) https://doi.org/10.1021/jf960339y
- Kubola J, Siriamornpun S, Meeso N. Phytochemicals, vitamin C and sugar content of Thai wild fruits. Food Chem. 126: 972-981 (2011) https://doi.org/10.1016/j.foodchem.2010.11.104
- Martin A, Prior R, Shukitt-Hale B, Cao G, Joseph JA. Effect of fruits, vegetables, or vitamin E-rich diet on vitamins E and C distribution in peripheral and brain tissues: implications for brain function. J. Gerontol. A-Biol. 55: B144-B151 (2000) https://doi.org/10.1093/gerona/55.3.B144
- Kamada C, da Silva EL, Ohnishi-Kameyama M, Moon JH, Terao J. Attenuation of lipid peroxidation and hyperlipidemia by quercetin glucoside in the aorta of high cholesterol-fed rabbit. Free Radical Res. 39: 185-194 (2005) https://doi.org/10.1080/10715760400019638
- Wang X, Zhao X, Gu L, Lv C, He B, Liu Z, Hou P, Bi K, Chen X. Simultaneous determination of five free and total flavonoids in rat plasma by ultra HPLC-MS/MS and its application to a comparative pharmacokinetic study in normal and hyperlipidemic rats. J. Chromatogr. B 953-954: 1-10 (2014) https://doi.org/10.1016/j.jchromb.2014.01.042
-
Yokozawa T, Kim HY, Cho EJ, Choi JS, Chung HY. Antioxidant effects of isorhamnetin 3,7-di-O-
${\beta}$ -D-glucopyranoside isolated from mustard leaf (Brassica juncea) in rats with streptozotocininduced diabetes. J. Agr. Food Chem. 50: 5490-5495 (2002) https://doi.org/10.1021/jf0202133 - Siriwardhana N, Kalupahana NS, Cekanova M, LeMieux M, Greer B, Moustaid-Moussa N. Modulation of adipose tissue inflammation by bioactive food compounds. J. Nutr. Biochem. 24: 613-623 (2013) https://doi.org/10.1016/j.jnutbio.2012.12.013
- Lu Y, Foo LY. Constitution of some chemical components of apple seed. Food Chem. 61: 29-33 (1998) https://doi.org/10.1016/S0308-8146(97)00123-4
-
Pacifico S, D'brosca B, Scognamiglio M, Gallicchio M, Potenza N, Piccolella S, Russo A, Monaco P, Fiorentino A. Metabolic profiling of strawberry grape (Vitis
$\times$ labruscana cv. 'sabella' components by nuclear magnetic resonance (NMR) and evaluation of their antioxidant and antiproliferative properties. J. Agr. Food Chem. 59: 7679-7687 (2011) https://doi.org/10.1021/jf200926t - Bocco A, Cuvelier ME, Richard H, Berset C. Antioxidant activity and phenolic composition of citrus peel and seed extracts. J. Agr. Food Chem. 46: 2123-2129 (1998) https://doi.org/10.1021/jf9709562
- Choi HJ, Park JH, Han HS, Son JH, Son GM, Bae JH, Choi C. Effect of polyphenol compound from Korean pear (Pyrus pyrifolia Nakai) on lipid metabolism. J. Korean Soc. Food Sci. Nutr. 33: 299-304 (2004) https://doi.org/10.3746/jkfn.2004.33.2.299
- Cui T, Nakamura K, Ma L, Li JZ, Kayahara H. Analyses of arbutin and chlorogenic acid, the major phenolic constituents in Oriental pear. J. Agr. Food Chem. 53: 3882-3887 (2005) https://doi.org/10.1021/jf047878k
- Lin LZ, Harnly JM. Phenolic compounds and chromatographic profiles of pear skins (Pyrus spp.). J. Agr. Food Chem. 56: 9094-9101 (2008) https://doi.org/10.1021/jf8013487
- Amiot MJ, Tacchini M, Aubert SY, Oleszek W. Influence of cultivar, maturity stage, and storage conditions on phenolic composition and enzymic browning of pear fruits. J. Agr. Food Chem. 43: 1132-1137 (1995) https://doi.org/10.1021/jf00053a004
- Oleszek W, Amiot MJ, Aubert SY. Identification of some phenolics in pear fruit. J. Agr. Food Chem. 42: 1261-1265 (1994) https://doi.org/10.1021/jf00042a002
- Lee KH, Cho JY, Lee HJ, Ma YK, Kwon J, Park SH, Lee SH, Cho JA, Kim WS, Park KH, Moon JH. Hydroxycinnamoylmalic acids and their methyl esters from pear (Pyrus pyrifolia Nakai) fruit peel. J. Agr. Food Chem. 59: 10124-10128 (2011) https://doi.org/10.1021/jf2022868
- Lee KH, Cho JY, Lee HJ, Park KY, Ma YK, Lee SH, Cho JA, Kim WS, Park KH, Moon JH. Isolation and identification of phenolic compounds from an asian pear (Pyrus pyrifolia Nakai) fruit peel. Food Sci. Biotechnol. 20: 1539-1545 (2011) https://doi.org/10.1007/s10068-011-0213-4
- Lee YG, Cho JY, Kim CM, Lee SH, Kim WS, Jeon TI, Park KH, Moon JH. Coumaroyl quinic acid derivatives and flavonoids from immature pear (Pyrus pyrifolia Nakai) fruit. Food Sci. Biotechnol. 22: 803-810 (2013) https://doi.org/10.1007/s10068-013-0148-z
- Cho JY, Kim CM, Lee HJ, Lee SH, Cho JA, Kim WS, Park KH, Moon JH. Caffeoyl triterpenes from pear (Pyrus pyrifolia Nakai) fruit peels and their antioxidative activities against oxidation of rat blood plasma. J. Agr. Food Chem. 61: 4563-4569 (2013) https://doi.org/10.1021/jf400524b
- Cho JY, Lee YG, Lee SH, Kim WS, Park KH, Moon JH. An ether and three ester derivatives of phenylpropanoid from pear (Pyrus pyrifolia Nakai cv. Chuhwangbae) fruit and their radicalscavenging activity. Food Sci. Biotechnol. 23: 253-259 (2014) https://doi.org/10.1007/s10068-014-0035-2
- Lee YG, Cho JY, Lee HJ, Lee YH, Lee SH, Han TH, Kim WS, Park KH, Moon JH. Isolation and identification of a sterol and three glucosides from the peel of pear (Pyrus pyrifolia Nakai cv. Chuhwangbae). Korean J. Food Sci. Technol. 45: 557-564 (2013) https://doi.org/10.9721/KJFST.2013.45.5.557
- Lee YG, Cho JY, Kim CM, Jeong HY, Lee DI, Kim SR, Lee SH, Kim WS, Park KH, Moon JH. Isolation and identification of 3 low-molecular compounds from pear (Pyrus pyrifolia Nakai cv. Chuhwangbae) fruit peel. Korean J. Food Sci. Technol. 45: 174-179 (2013) https://doi.org/10.9721/KJFST.2013.45.2.174
- Huang LJ, Gao WY, Li X, Zhao WS, Huang LQ, Liu CX. Evaluation of the in vivo anti-inflammatory effects of extracts from Pyrus bretschneideri Rehd. J. Agr. Food Chem. 58: 8983-8987 (2010) https://doi.org/10.1021/jf101390q
- Li X, Zhang J, Gao W, Wang H. Study on chemical composition, anti-inflammatory and anti-microbial activities of extracts from Chinese pear fruit (Pyrus bretschneideri Rehd.). Food Chem. Toxicol. 50: 3673-3679 (2012) https://doi.org/10.1016/j.fct.2012.07.019
- Li X, Wang T, Zhou B, Gao W, Cao J, Huang L. Chemical composition and antioxidant and anti-inflammatory potential of peels and flesh from 10 different pear varieties (Pyrus spp.). Food Chem. 152: 531-538 (2014) https://doi.org/10.1016/j.foodchem.2013.12.010
- Takao T, Kitatani F, Watanabe N, Yagi A, Sakata K. A simple screening method for antioxidants and isolation of several antioxidants produced by marine bacteria from fish and shellfish. Biosci. Biotech. Bioch. 58: 1780-1783 (1994) https://doi.org/10.1271/bbb.58.1780
- Kim JY, Cho JY, Ma YK, Park KY, Lee SH, Ham KS, Lee HJ, Park KH, Moon JH. Dicaffeoylquinic acid derivatives and flavonoid glucosides from glasswort (Salicornia herbacea L.) and their antioxidative activity. Food Chem. 125: 55-62 (2011) https://doi.org/10.1016/j.foodchem.2010.08.035
- Deachathai S, Mahabusarakam W, Phongpaichit S, Taylor WC. Phenolic compounds from the fruit of Garcinia dulcis. Phytochemistry 66: 2368-2375 (2005) https://doi.org/10.1016/j.phytochem.2005.06.025
- Miyake Y, Fukumoto S, Okada M, Sakaida K, Nakamura Y, Osawa T. Antioxidative catechol lignans converted from sesamin and sesaminol triglucoside by culturing with Aspergillus. J. Agr. Food Chem. 53: 22-27 (2005) https://doi.org/10.1021/jf048743h
- Glasser G, Graefe EU, Struck F, Veit M, Gebhardt R. Comparison of antioxidative capacities and inhibitory effects on cholesterol biosynthesis of quercetin and potential metabolites. Phytomedicine 9: 33-40 (2002) https://doi.org/10.1078/0944-7113-00080
- Vallejo F, Tomas-Barberan FA, Ferreres F. Characterisation of flavonols in broccoli (Brassica oleracea L. var. italica) by liquid chromatography-UV diode-array detection-electrospray ionisation mass spectrometry. J. Chromatogr. A 1054: 181-193 (2004) https://doi.org/10.1016/j.chroma.2004.05.045
- Miura S, Watanabe J, Sano M, Tomita T, Osawa T, Hara Y, Tomita I. Effects of various natural antioxidants on the Cu2+-mediated oxidative modification of low-density lipoprotein. Biol. Pharm. Bull. 18: 1-4 (1995) https://doi.org/10.1248/bpb.18.1
- Yamamoto N, Moon JH, Tsushida T, Nagao A, Terao J. Inhibitory effect of quercetin metabolites and their related derivatives on copper ion-induced lipid peroxidation in human low-density lipoprotein. Arch. Biochem. Biophys. 372: 347-354 (1999) https://doi.org/10.1006/abbi.1999.1516
- Zheng SY, Li Y, Jiang D, Zhao J, Ge JF. Anticancer effect and apoptosis induction by quercetin in the human lung cancer cell line A-549. Mol. Med. Rep. 5: 822-826 (2012)
-
Moon JH, Tsushida T, Nakahara K, Terao J. Identification of quercetin 3-O-
${\beta}$ -D-glucuronide as an antioxidative metabolite in rat plasma after oral administration of quercetin. Free Radical Bio. Med. 30: 1274-1285 (2001) https://doi.org/10.1016/S0891-5849(01)00522-6 - Moon JH, Nakata R, Oshima S, Inakuma T, Terao J. Accumulation of quercetin conjugates in blood plasma after the short-term ingestion of onion by women. Am. J. Physiol. 279: R461-R467 (2000)
- Yokoyama A, Sakakibara H, Crozier A, Kawai Y, Matsui A, Terao J, Kumazawa S, Shimoi K. Quercetin metabolites and protection against peroxynitrite-induced oxidative hepatic injury in rats. Free Radical Res. 43: 913-921 (2009) https://doi.org/10.1080/10715760903137010
- Tai BH, Trung TN, Nhiem NX, Ha DT, Men CV, Duong VB, Luong HV, Song SB, Bae K, Kim YH. A new flavan-3-ol and the anti-inflammatory effect of flavonoids from the fruit peels of Wisteria floribunda. J. Asian Nat. Prod. Res. 13: 1061-1068 (2011) https://doi.org/10.1080/10286020.2011.603306