Effectiveness of Microsatellite Markers for Parentage Analysis of Giant Grouper (Epinephelus lanceolatus) Broodstock

Microsatellite 마커를 이용한 대왕바리(Epinephelus lanceolatus) 친어 집단의 가계도 분석 효율

  • Kim, Keun-Sik (East Sea Research Institute, Korea Institute of Ocean Science and Technology) ;
  • Noh, Choong Hwan (East Sea Research Institute, Korea Institute of Ocean Science and Technology) ;
  • Sade, Ahemad (Department of Fisheries, Sabah, Wisma Pertanian Sabah) ;
  • Bang, In-Chul (Department of Life Science and Biotechnology, Soonchunhyang University)
  • 김근식 (한국해양과학기술원 동해연구소) ;
  • 노충환 (한국해양과학기술원 동해연구소) ;
  • ;
  • 방인철 (순천향대학교 생명시스템학과)
  • Received : 2015.01.29
  • Accepted : 2015.03.16
  • Published : 2015.03.31

Abstract

Giant grouper (Epinephelus lanceolatus) is a endangered species considered as a vulnerable grade-organism in the International Union for Conservation of Nature (IUCN) red list. As a fundamental baseline study for establishing a giant grouper broodstock management system, the efficiency for parentage analysis was evaluated by using microsatellite makers previously available in this species. The eight microsatellites generated a total 52 alleles from 32 individuals, the mean expected heterozygosity was 0.663, and mean inbreeding coefficient was 0.011, consequently suggesting that the present broodstock has retained the high level of genetic diversity. However, our analysis also recommended the collection of more broodfish for more stable brood line, since the estimated value of the effective population size was proven to be 35. The average probability of identity was $6.85{\times}10^{-11}$. NE-2P and NE-PP of paternity non-exclusion probabilities were 0.00835 and 0.00027, respectively. As the result of principle coordinate analysis, the genotype of broodstock was not overlapped, suggesting that the management system of giant grouper based on eight selected microsatellite markers might be effective, although further validation with extended number of broodfish might also be needed in future. Data of present study could be a useful basis to avoid the unwanted selection of broodfish that possess close genetic relationship with current broodstock, and consequently to establish effective broodstock management system allowing the production of progeny with high genetic diversity.

현재 IUCN의 취약 등급인 대왕바리(giant grouper, Epinephelus lanceolatus) 친어의 효율적인 관리 시스템 구축을 위한 기반연구로서 기 개발되어 있는 동종의 microsatellite 마커를 이용한 가계도 분석 효율을 조사하였다. 대왕바리 친어 32마리를 8개의 microsatellite 마커로 분석한 결과 총 52개의 대립유전자가 검출되었으며, 기대치 이형접합율은 0.663, 근친교배계수는 0.011로 조사되어 현재 확보된 대왕바리 친어는 유전 다양성이 비교적 잘 유지되고 있었다. 하지만 유효집단 크기가 35로 추정됨으로써 지속적인 친어 확보의 필요성을 보였다. 해당 마커를 이용한 동일 유전자형 출현 확률은 무작위 집단에서 $6.85{\times}10^{-11}$ 그리고 한쪽 부모의 유전자형 확보 및 양친의 유전자형이 확보된 상태에서의 부권 부정률은 각각 0.00835, 0.00027로 나타났으며, 주좌표 분석 결과 친어의 유전자형은 중복되지 않았다. 따라서 본 연구에 이용한 8개의 microsatellite 마커로도 유전자형 데이터베이스를 기반으로 한 대왕바리 친어 관리 시스템 구축이 가능할 것이며, 이를 활용한 유전 다양성이 높은 자손 생산 및 유전적으로 유사한 개체의 중복 확보를 방지할 수 있어 친어 확보의 효율성을 높일 수 있을 것이다.

Keywords

References

  1. Allendort, F.W., G. Luikart and S.N. Aitken. 2013. Conservation and the Genetics of Populations. Wiley-Blackwell, Oxford, U.K.
  2. Ayres, K.L. and A.D.J. Overall. 2004. API-CALC 1.0: a computer program for calculating the average probability of identity allowing for substructure, inbreeding and the presence of close relatives. Mol. Ecol. Notes, 4: 315-318. https://doi.org/10.1111/j.1471-8286.2004.00616.x
  3. Beacham, T.D., M. Lapointe, J.R. Candy, K.M. Miller and R.E. Withler. 2004. DNA in action: rapid application of DNA variation to sockeye salmon fisheries management. Conserv. Gen., 5: 411-416. https://doi.org/10.1023/B:COGE.0000031140.41379.73
  4. Bean, K., B.D. Mapstone, C.R. Davies, C.D. Murchie and A.J. Williams. 2003. Gonad development and evidence of protogyny in the red-throat emperor on the Great Barrier Reef. J. Fish Biol., 62: 299-310. https://doi.org/10.1046/j.1095-8649.2003.00021.x
  5. Boudry, P., B. Collet, F. Cornette, V. Hervouet and F. Bonhomme. 2002. High variance in reproductive success of the Pacific oyster (Crassostrea gigas, Thunberg) revealed by microsatellite-based parentage analysis of multifactorial crosses. Aquacult., 204: 283-296. https://doi.org/10.1016/S0044-8486(01)00841-9
  6. DeWoody, J.A. and J.C. Avise. 2000. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J. Fish Biol., 56: 461-473. https://doi.org/10.1111/j.1095-8649.2000.tb00748.x
  7. Evans, B., J. Bartlett, N. Sweijd, P. Cook and N.G. Elliott. 2004. Loss of genetic variation at microsatellite loci in hatchery produced abalone in Australia (Haliotis rubra) and South Africa (Haliotis midae). Aquacult., 233: 109-127. https://doi.org/10.1016/j.aquaculture.2003.09.037
  8. Frankham, R., J.D. Ballow and D.A. Briscoe. 2004. A primer of conservation genetics. Cambridge University Press, Cambridge, U.K.
  9. Franklin, I.R. 1980. Evolutionary change in small populations. In: Soule, M.E. and B.A. Wilcox (eds.), Conservation Biology: An Evolutionary Ecological Perspective. Sinauer Associates, Sunderland, Massachusetts.
  10. Froese, R. and D. Pauly. (eds.). 2014. FishBase. World Wide Web electronic publication. www.fishbase.org (version 02/2014).
  11. Heemstra, P.C. and J.E. Randall. 1993. FAO species catalogue. Vol. 16. Groupers of the world (family Serranidae, subfamily Epinephelinae). An annotated and illustrated catalogue of the grouper, rockcod, hind, coral grouper and lyretail species known to date. FAO Fish. Synop., 125: 382 p.
  12. Jarne, P. and P.J.G. Lagoda. 1996. Microsatellites, from molecules to populations and back. Trends Ecol. Evol., 11: 424-429. https://doi.org/10.1016/0169-5347(96)10049-5
  13. Koedprang, W., U. Na-Nakorn, M. Nakajima and N. Taniguchi. 2007. Evaluation of genetic diversity of eight grouper species Epinephelus spp. based on microsatellite variations. Fish. Sci., 73: 227-236. https://doi.org/10.1111/j.1444-2906.2007.01328.x
  14. Koljonen, M.L., J. Tähtinen, M. Säisä and J. Koskiniemi. 2002. Maintenance of genetic diversity of Atlantic salmon (Salmo salar) by captive breeding programmes and the geographic distribution of microsatellite variation. Aquacult., 212: 69-92. https://doi.org/10.1016/S0044-8486(01)00808-0
  15. Kuo, H.C., H.H. Hsu, C.S. Chua, T.Y. Wang, Y.M. Chen and T.Y. Chen. 2014. Development of pedigree classification using microsatellite and mitochondrial markers for giant grouper broodstock (Epinephelus lanceolatus) management in Taiwan. Mar. Drugs, 12: 2397-2407. https://doi.org/10.3390/md12052397
  16. Li, Q., C. Park, T. Endo and A. Kijima. 2004. Loss of genetic variation at microsatellite loci in hatchery strains of the Pacific abalone (Haliotis discus hannai). Aquacult., 235: 207-222. https://doi.org/10.1016/j.aquaculture.2003.12.018
  17. Li, Q., H. Yu and R. Yu. 2006. Genetic variability assessed by microsatellites in cultured populations of the Pacific oyster (Crassostrea gigas) in China. Aquacult., 259: 95-102. https://doi.org/10.1016/j.aquaculture.2006.05.030
  18. Liu, Z. 2011. Genomic variations and marker technologies for genome-based selection. In: Liu, Z. (ed.), Next Generation Sequencing and Whole Genome Selection in Aquaculture. Wiley-Blackwell, Oxford, U.K.
  19. Liu, Z.J. and J.F. Cordes. 2004. DNA marker technologies and their applications in aquaculture genetics. Aquacult., 238: 1-37. https://doi.org/10.1016/j.aquaculture.2004.05.027
  20. Marshall, T.C., J. Slate, L.E.B. Kruuk and J.M. Pemberton. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol., 7: 639-655. https://doi.org/10.1046/j.1365-294x.1998.00374.x
  21. McConnell, S., L. Hamilton, D. Morris, D. Cook, D. Paquet, P. Bentzen and J. Wright. 1995. Isolation of salmonid microsatellite loci and their application to the population genetics of Canadian east coast stocks of Atlantic salmon. Aquacult., 137: 19-30. https://doi.org/10.1016/0044-8486(95)01111-0
  22. Myoung, J.-G., C.-B. Kang, J.M. Yoo, E.K. Lee, S. Kim, C.-H. Jeong and B.-I. Kim. 2013. First record of the giant grouper Epinephelus lanceolatus (Perciformes: Serranidae: Epinephelinae) from Jeju island, South Korea. Fish. Aquat. Sci., 16: 49-52.
  23. Nelson, J.S. 2006. Fishes of the World. Fourth edition. John Wiley & Sons, Inc., 601pp.
  24. Oh, S.R., H.C. Kang, C.H. Lee, S.W. Hur and Y.D. Lee. 2013. Sex reversal and masculinization according to growth in longtooth grouper Epinephelus bruneus. Dev. Reprod., 17: 79-85. (in Korean) https://doi.org/10.12717/DR.2013.17.2.079
  25. Palstra, F.P. and D.E. Ruzzante. 2008. Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol. Ecol., 17: 3428-3447. https://doi.org/10.1111/j.1365-294X.2008.03842.x
  26. Peakall, R. and P.E. Smouse. 2006. Genealex 6: Genetic analysis in excel. Population genetic software for teaching and research. Mol. Ecol. Notes, 6: 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  27. Perez-Enriquez, R., M. Takagi and N. Taniguchi. 1999. Genetic variability and pedigree tracing of a hatchery-reared stock of red sea bream (Pagrus major) used for stock enhancement, based on microsatellite DNA markers. Aquacult., 173: 413-423. https://doi.org/10.1016/S0044-8486(98)00469-4
  28. Raymond, M. and F. Rousset. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered., 86: 248-249. https://doi.org/10.1093/oxfordjournals.jhered.a111573
  29. Rudnick, J.A. and R.C. Lacy. 2008. The impact of assumptions about founder relationships on the effectiveness of captive breeding strategies. Conserv. Gen., 9: 1439-1450. https://doi.org/10.1007/s10592-007-9472-2
  30. Schwartz, M.K., G. Luikart and R.S. Waples. 2007. Genetic monitoring as a promising tool for conservation and management. Trends Ecol. Evol., 22: 25-33. https://doi.org/10.1016/j.tree.2006.08.009
  31. Sekino, M., K. Saitoh, T. Yamada, A. Kumagai, M. Hara and Y. Yamashita. 2003. Microsatellite-based pedigree tracing in a Japanese flounder Paralichthys olivaceus hatchery strain: implications for hatchery management related to stock enhancement program. Aquacult., 221: 255-263. https://doi.org/10.1016/S0044-8486(02)00667-1
  32. Shuk Man, C. and N.W. Chuen (Grouper & Wrasse Specialist Group). 2006. Epinephelus lanceolatus. The IUCN Red List of Threatened Species. Version 2014.3. . Downloaded on 27 March 2015.
  33. Sunnucks, P. 2000. Efficient genetic markers for population biology. Trends Ecol. Evol., 15: 199-203. https://doi.org/10.1016/S0169-5347(00)01825-5
  34. Tautz, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl. Acids Res., 17: 6463-6471. https://doi.org/10.1093/nar/17.16.6463
  35. Van Oosterhout, C., W. Hutchinson, D. Willds and P. Shipley. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes, 4: 535-538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
  36. Wan, Q.-H., H. Wu, T. Fujihara and S.-G. Fang. 2004. Which genetic marker for which conservation genetics issue? Electrophor., 25: 2165-2176. https://doi.org/10.1002/elps.200305922
  37. Waples, R.S. and C. Do. 2008. LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol., 8: 753-759. https://doi.org/10.1111/j.1755-0998.2007.02061.x
  38. Yang, S., L. Wang, Y. Zhang, X.C. Liu, H.R. Lin and Z.N. Meng. 2011. Development and characterization of 32 microsatellite loci in the giant grouper Epinephelus lanceolatus (Serranidae). Genet. Mol. Res., 10: 4006-4011. https://doi.org/10.4238/2011.December.12.3
  39. Zeng, H.S., S.X. Ding, J. Wang and Y.Q. Su. 2008. Characterization of eight polymorphic microsatellite loci for the giant grouper (Epinephelus lanceolatus Bloch). Mol. Ecol. Resour., 8: 805-807. https://doi.org/10.1111/j.1755-0998.2007.02070.x