양자점(Quantum Dot) 소재 개발 동향

  • 배완기 (광전하이브리드연구센터, 한국과학기술연구원)
  • Published : 2015.02.28

Abstract

Keywords

References

  1. L. Brus, J. Phys. Chem. 90, 2555 (1986). https://doi.org/10.1021/j100403a003
  2. C. B. Murray, C. R. Kagan, and M. Bawendi, Annu. Rev. Mater. Sci. 30, 545 (2000). https://doi.org/10.1146/annurev.matsci.30.1.545
  3. V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, Nature 370, 354 (1994). https://doi.org/10.1038/370354a0
  4. B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, Nat. Photon. 7, 407 (2013). https://doi.org/10.1038/nphoton.2013.70
  5. J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, Nano Lett. 12, 2362 (2012). https://doi.org/10.1021/nl3003254
  6. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, Nature 515, 96 (2014). https://doi.org/10.1038/nature13829
  7. C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993). https://doi.org/10.1021/ja00072a025
  8. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, and A. P. Alivisatos, Nature 404, 59 (2000). https://doi.org/10.1038/35003535
  9. S. Ithurria, M. D. Tessier, B. Mahler, R. P. S. M. Lobo, B. Dubertret, and A. L. Efros, Nat. Mater. 10, 936 (2011). https://doi.org/10.1038/nmat3145
  10. Y. A. Yang, H. Wu, K. R. Williams, and Y. C. Cao, Angew. Chem. Int. Ed. 44, 6712 (2005). https://doi.org/10.1002/anie.200502279
  11. J. Hu, L.-s. Li, W. Yang, L. Manna, L.-w. Wang, and A. P. Alivisatos, Science 292, 2060 (2001). https://doi.org/10.1126/science.1060810
  12. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997). https://doi.org/10.1021/ja970754m
  13. M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996). https://doi.org/10.1021/jp9530562
  14. S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S.-W. Kim, J. Am. Chem. Soc. 134, 3804 (2012). https://doi.org/10.1021/ja210211z
  15. W. K. Bae, K. Char, H. Hur, and S. Lee, Chem. Mater. 20, 531 (2008). https://doi.org/10.1021/cm070754d
  16. W. K. Bae, M. K. Nam, K. Char, and S. Lee, Chem. Mater. 20, 5307 (2008). https://doi.org/10.1021/cm801201x
  17. S. Jun and E. Jang, Angew. Chem. Int. Ed. 52, 679 (2013). https://doi.org/10.1002/anie.201206333
  18. S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovic, Nature 420, 800 (2002). https://doi.org/10.1038/nature01217
  19. A. H. Mueller, M. A. Petruska, M. Achermann, D. J. Werder, E. A. Akhadov, D. D. Koleske, M. A. Hoffbauer, and V. I. Klimov, Nano Lett. 5, 1039 (2005). https://doi.org/10.1021/nl050384x
  20. W. K. Bae, S. Brovelli, and V. I. Klimov, MRS Bull. 38, 721 (2013). https://doi.org/10.1557/mrs.2013.182
  21. J. Lim, B. G. Jeong, M. Park, J. K. Kim, J. M. Pietryga, Y.-S. Park, V. I. Klimov, C. Lee, D. C. Lee, and W. K. Bae, Adv. Mater. 26, 8034 (2014). https://doi.org/10.1002/adma.201403620
  22. W. K. Bae, Y.-S. Park, J. Lim, D. Lee, L. A. Padilha, H. McDaniel, I. Robel, C. Lee, J. M. Pietryga, and V. I. Klimov, Nat. Commun. 4, 2661 (2013). https://doi.org/10.1038/ncomms3661
  23. D. Bozyigit, O. Yarema, and V. Wood, Adv. Funct. Mater. 23, 3024 (2013). https://doi.org/10.1002/adfm.201203191
  24. T.-H. Kim, K.-S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, Nat. Photon. 5, 176 (2011). https://doi.org/10.1038/nphoton.2011.12
  25. W. K. Bae, J. Lim, D. Lee, M. Park, H. Lee, J. Kwak, K. Char, C. Lee and S. Lee, Adv. Mater. 26, 8034 (2014). https://doi.org/10.1002/adma.201403620
  26. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Science 287, 1011 (2000). https://doi.org/10.1126/science.287.5455.1011
  27. I. Robel, R. Gresback, U. Kortshagen, R. D. Schaller, and V. I. Klimov, Phys. Rev. Lett. 102, 177404 (2009). https://doi.org/10.1103/PhysRevLett.102.177404
  28. C. Galland, Y. Ghosh, A. Steinbruck, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, Nature 479, 203 (2011). https://doi.org/10.1038/nature10569
  29. F. Garcia-Santamaria, Y. Chen, J. Vela, R. D. Schaller, J. A. Hollingsworth, and V. I. Klimov, Nano Lett. 9, 3482 (2009). https://doi.org/10.1021/nl901681d
  30. Y. S. Park, A. V. Malko, J. Vela, Y. Chen, Y. Ghosh, F. Garcia-Santamaria, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, Phys. Rev. Lett. 106, 187401 (2011). https://doi.org/10.1103/PhysRevLett.106.187401
  31. B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier and B. Dubertret, Nat. Mater. 7, 659 (2008). https://doi.org/10.1038/nmat2222
  32. G. E. Cragg and A. L. Efros, Nano Lett. 10, 313 (2009).
  33. W. K. Bae, L. A. Padilha, Y.-S. Park, H. McDaniel, I. Robel, J. M. Pietryga, and V. I. Klimov, ACS Nano 7, 3411 (2013). https://doi.org/10.1021/nn4002825
  34. Y.-S. Park, W. K. Bae, L. A. Padilha, J. M. Pietryga, and V. I. Klimov, Nano Lett. 14, 396 (2014). https://doi.org/10.1021/nl403289w