유기 태양전지 효율 향상을 위한 신규 고분자 재료의 구조 설계 및 개발 동향

  • 강태의 (한국과학기술원/생명화학공학과) ;
  • 김태수 (한국과학기술원/생명화학공학과) ;
  • 김범준 (한국과학기술원/생명화학공학과)
  • Published : 2015.02.28

Abstract

Keywords

References

  1. F. C. Krebs, Sol. Energy Mater. Sol. Cells, 93, 394 (2009). https://doi.org/10.1016/j.solmat.2008.10.004
  2. S. Gunes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev., 107, 1324 (2007). https://doi.org/10.1021/cr050149z
  3. A. C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay, and A.Salleo, Chem. Rev., 110, 3 (2010). https://doi.org/10.1021/cr900150b
  4. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct.Mater., 11, 15 (2001). https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
  5. L. M. Campos, A. Tontcheva, S. Gunes, G. Sonmez, H. Neugebauer, N. S. Sariciftci and F. Wudl, Chem. Mater., 17, 4031 (2005). https://doi.org/10.1021/cm050463+
  6. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater., 4, 864 (2005). https://doi.org/10.1038/nmat1500
  7. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater., 15, 1617 (2005). https://doi.org/10.1002/adfm.200500211
  8. H. Zhou, L. Yang, S. Stoneking, and W. You, ACS Appl. Mater. Interfaces , 2, 1377 (2010). https://doi.org/10.1021/am1000344
  9. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T.Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, Adv. Funct. Mater., 11, 374 (2001). https://doi.org/10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W
  10. H. X. Zhou, L. Q. Yang, S. Stoneking, W. You, Acs Applied Materials & Interfaces,. 2, 1377 (2010). https://doi.org/10.1021/am1000344
  11. C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge, J. M. J. Frechet, J Am Chem Soc., 132, 7595 (2010). https://doi.org/10.1021/ja103275u
  12. J. S. Wu, Y. J. Cheng, M. Dubosc, C. H. Hsieh, C. Y. Chang, C. S. Hsu, Chem Commun., 46, 3259 (2010). https://doi.org/10.1039/c003040f
  13. Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem Rev., 109, 5868 (2009). https://doi.org/10.1021/cr900182s
  14. S. Zhang, L. Ye, W. Zhao, D. Liu, H. Yao, J. Hou, Macromolecules., 47, 4653 (2014). https://doi.org/10.1021/ma500829r
  15. L. J. Huo, S. Q. Zhang, X. Guo, F. Xu, Y. F. Li, J. H. Hou, Angew Chem Int Edit., 123, 9871 (2011). https://doi.org/10.1002/ange.201103313
  16. H. X. Zhou, L. Q. Yang, A. C. Stuart, S. C. Price, S. B. Liu, W. You, Angew Chem Int Edit., 123, 3051 (2011). https://doi.org/10.1002/ange.201005451
  17. T. Y. Chu, J. P. Lu, S. Beaupre, Y. G. Zhang, J. R. Pouliot, S. Wakim, J. Y. Zhou, M. Leclerc, Z. Li, J. F. Ding, Y. Tao, J Am Chem Soc., 133, 4250 (2011). https://doi.org/10.1021/ja200314m
  18. H. C. Chen, Y. H. Chen, C. C. Liu, Y. C. Chien, S. W. Chou, P. T. Chou, Chem Mater. , 24, 4766 (2012). https://doi.org/10.1021/cm302861s
  19. Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, Nat Comm, 5, 5293 (2014). https://doi.org/10.1038/ncomms6293
  20. T. E. Kang, K.-H. Kim, B. J. Kim, J Mater Chem A., 2, 15252 (2014). https://doi.org/10.1039/C4TA02426E
  21. T. E. Kang, H.-H. Cho, H. j. Kim, W. Lee, H. Kang, B. J. Kim, Macromolecules ., 46, 6806 (2013). https://doi.org/10.1021/ma401274r
  22. K.-H. Kim, S. Park, H. Yu, H. Kang, I. H. Song, J. H. Oh, B. J. Kim, Chem Mater., 26, 6963 (2014). https://doi.org/10.1021/cm502991d
  23. K. H. Hendriks, G. H. Heintges, V. S. Gevaerts, M. M. Wienk and R. A. Janssen, Angew. Chem., Int. Ed., 52, 8341 (2013). https://doi.org/10.1002/anie.201302319
  24. W.-H. Chang, J. Gao, L. Dou, C.-C. Chen, Y. Liu and Y. Yang, Adv. Energy Mater., 4, 1300864 (2014). https://doi.org/10.1002/aenm.201300864
  25. J.-M. Jiang, H.-C. Chen, H.-K. Lin, C.-M. Yu, S.-C. Lan, C.-M. Liu and K.-H. Wei, Polym. Chem., 4, 5321 (2013). https://doi.org/10.1039/c3py00132f