DOI QR코드

DOI QR Code

Co-treatment with Fermented Black Raspberry and Red Ginseng Extracts Improves Lipid Metabolism and Obesity in Rats Fed with a High-fat and High-cholesterol Diet

복분자와 홍삼 발효 추출물의 복합투여가 고지방 고콜레스테롤 식이를 섭취한 흰쥐의 지질대사 및 비만에 미치는 영향

  • Received : 2014.12.24
  • Accepted : 2015.03.19
  • Published : 2015.06.30

Abstract

This study investigated the effects of fermented black raspberry (BR) and red ginseng (RG) extract co-treatment on lipid metabolism and obesity in rats fed with a high fat/high cholesterol diet (HFHCD) for 12 weeks. Compared to the corresponding values in rats fed with a HFHCD, total cholesterol and low-density lipoprotein (LDL)-cholesterol and triglyceride levels decreased whereas high-density lipoprotein (HDL)-cholesterol levels increased in rats treated with fermented BR and RG extracts. These extracts significantly increased the expression of HMG-CoA reductase, LDL receptor, and sterol regulatory-element-binding protein-2 (SREBP-2) mRNA, but decreased the mRNA expression of SREBP-1. Additionally the serum levels of leptin and fatty acid synthase were decreased. Moreover, supplementation with fermented BR and RG effectively increased fecal cholesterol excretion. These results suggest that fermented BR and RG extracts might be effective at preventing hypercholesterolemia and obesity.

이 연구는 고지방 고콜레스테롤 식이를 12주 동안 랫트에게 공급하여 복분자와 홍삼, 복분자와 홍삼 발효 추출물의 지질대사 및 비만 개선효과를 조사하였다. 정상식이, 고지방 고콜레스테롤 식이, 양성대조군, 유산균발효군, 복분자와 홍삼, 복분자와 홍삼 발효 추출물 투여군의 체중증가, 음수, 식이 섭취량은 그룹간의 유의적인 차이를 보이지 않았다. 하지만 혈중 HDL-콜레스테롤은 고지방 고콜레스테롤 식이와 비교 했을 때 복분자와 홍삼 발효 추출물에서 유의적인 증가를 보였으며, LDL-콜레스테롤, 중성지방은 유의적인 감소율을 보였다. 또한, 간 조직에서 복분자와 홍삼 발효추출물 처치에 의해 HMG-CoA reductase, LDL receptor 및 SREBP-2 mRNA의 발현 증가와 지방생성 억제를 확인하였다. 그리고 복분자와 홍삼 발효 추출물 투여군은 비만인자인 혈중 leptin과 FAS의 농도를 유의적으로 감소시켰을 뿐만 아니라 대변에서 체내 콜레스테롤 배출을 증가시켰다. 이러한 결과로 미루어 보아 복분자와 홍삼 발효 추출물은 혈중 지질 대사 및 비만의 예방에 기여할 것으로 판단된다.

Keywords

References

  1. Han YO. The development of module for measurement and wireless communication of SpO2/PPG signals. J. Korea Inst. Electron. Commun. Sci. 6: 981-986 (2011)
  2. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 444: 881-887 (2006) https://doi.org/10.1038/nature05488
  3. Nam SM, Ha EH, Suh YJ, Park SH, Chang MH, Seo JH, Kim BM. Effect of obesity and blood lipid profiles on hyperlipidemia in adults aged over 40 years. Korean J. Obes. 17: 20-28 (2008)
  4. Eu GS, Chung BY, Bandopadhyay R, Yoo NH, Choi DG, Yun SJ. Phylogenic relationships of Rubus species revealed by randomly amplified polymorphic DNA markers. J. Crop Sci. Biotech. 11: 39-44 (2008)
  5. Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, Heber D. Blackberry, black raspberry, blueberry, cranberry, red raspberry and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J. Agr. Food Chem. 54: 9329-9339 (2006) https://doi.org/10.1021/jf061750g
  6. Chen T, Hwang HJ, Rose ME, Nines RG, Stoner GD. Chemopreventive properties of black raspberries in N-nitrosomethylbenzylamine-induced rat esophageal tumorigenesis: Down-regulation of cyclooxygenase-2, inducible nitric oxide synthase, and c-jun. Cancer Res. 66: 2853-2859 (2006) https://doi.org/10.1158/0008-5472.CAN-05-3279
  7. Wang SY, Jiao H. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J. Agr. Food Chem. 48: 5677-5684 (2000) https://doi.org/10.1021/jf000766i
  8. Lee SJ, Lee MJ, Ko YJ, Choi HR, Jeong JT, Choi KM, Cha JD, Hwang SM, Jung HK, Park JH, Lee TB. Effects of extracts of unripe black raspberry and red ginseng on cholesterol synthesis. Korean J. Food Sci. Technol. 45: 628-635 (2013) https://doi.org/10.9721/KJFST.2013.45.5.628
  9. Choi HR, Lee SJ, Lee JH, Kwon JW, Lee HK, Jeong JT, Lee TB. Cholesterol-lowering effects of unripe black raspberry water extract. J. Korean Soc. Food Sci. Nutr. 42: 1899-1907 (2013) https://doi.org/10.3746/jkfn.2013.42.12.1899
  10. Yang HM, Oh SM, Lim SS, Shin HK, Oh YS, Kim JK. Antiinflammatory activities of Rubus coreanus depend on the degree of fruit ripening. Phytother. Res. 22: 102-107 (2008) https://doi.org/10.1002/ptr.2274
  11. Park CK, Kwak YS, Hwang MS, Kim SC, Do JH. Trends and prospect of ginseng products in market health functional food. Food Sci. Ind. 40: 30-45 (2007)
  12. Nam KY. The comparative understanding between red ginseng and white ginsengs processed ginsengs (panax ginseng C. A. Meyer). J. Ginseng Res. 29: 1-18 (2005) https://doi.org/10.5142/JGR.2005.29.1.001
  13. Sung, H, Jung YS, Cho YK. Beneficial effects of a combination of Korean red ginseng and highly active antiretroviral therapy in human immunodeficiency virus type 1-infected patients. Clin. Vaccine Immunol. 16: 1127-1131 (2009) https://doi.org/10.1128/CVI.00013-09
  14. Joo CN, Koo JH, Baik TH. Biochemical study of some pharmacological effects of Panax ginseng C. A. Meyer. Biochip. J. 13: 63-80 (1980)
  15. Yoon SH, Joo CN. Study on the preventive effect of ginsenosides against hypercholesterolemia and its mechanism. J. Ginseng Res. 17: 1-12 (1993)
  16. Kang BH, Koo JH, Joo CN. Effect of saponin fraction of Panax ginseng C. A. Meyer on blood serum lipoprotein distribution of cholesterol fed rabbits. J. Ginseng Res. 10: 114-121 (1986)
  17. Salminen S, von Wright A, Morelli L, Marteau P, Brassart D, de Vos WM, Fonden R, Saxelin M, Collins K, Mogensen G, Birkeland SE, Mattila-Sandholm T. Demonstration of safety of probiotics-a review. Int. J Food Microbiol. 44: 93-106 (1998) https://doi.org/10.1016/S0168-1605(98)00128-7
  18. Danielson AD, Peo ER Jr, Shahani KM, Lewis AJ, Whalen PJ, Amer MA. Anticholesteremic property of Lactobacillus acidophilus yogurt fed to mature boars. J. Anim. Sci. 67: 966-974 (1989) https://doi.org/10.2527/jas1989.674966x
  19. Goldin BR, Gorbach SL, Saxelin M, Barakat S, Gualtieri L, Salminen S. Survival of Lactobacillus species (strain GG) in human gastrointestinal tract. Digest. Dis. Sci. 37: 121-128 (1992) https://doi.org/10.1007/BF01308354
  20. Perdigon G, Alvarez S, Rachid M, Aguero G, Gobbato N. Immune system stimulation by probiotics. J. Dairy Sci. 78: 1597-1606 (1995) https://doi.org/10.3168/jds.S0022-0302(95)76784-4
  21. Trinh HT, Han SJ, Kim SW, Lee YC, Kim DH. Bifidus fermentation increases hypolipidemic and hypoglycemic effects of red ginseng. J. Microbiol. Biotechn. 17: 1127-1133 (2007)
  22. Jeon BS, Park JW, Kim BK, Kim HK, Jung TS, Hahm JR, Kim DR, Cho YS, Cha JY. Fermented mushroom milk-supplemented dietary fibre prevents the onset of obesity and hypertriglyceridaemia in Otsuka Long-Evans Tokushima fatty rats. Diabetes Obes. Metab. 7: 709-715 (2005) https://doi.org/10.1111/j.1463-1326.2005.00456.x
  23. Bae EA, Hyun YJ, Choo MK, Oh JK, Ryu JH, Kim DH. Protective effect of fermented red ginseng on transient focal ischemic rats. Arch. Pharm. Res. 27: 1136-1140 (2004) https://doi.org/10.1007/BF02975119
  24. Tanida M, Shen J, Maeda K, Horii Y, Yamano T, Fukushima Y, Nagai K. High-fat diet-induced obesity is attenuated by probiotic strain Lactobacillus paracasei ST11 (NCC2461) in rats. Obes. Res. Clin. Pract. 2: 159-169 (2008) https://doi.org/10.1016/j.orcp.2008.04.003
  25. Miyoshi M, Ogawa A, Higurashi S, Kadooka Y. Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice. Eur. J. Nutr. 53: 599-606 (2014) https://doi.org/10.1007/s00394-013-0568-9
  26. Rossouw JE, Burger EM, Van der Vyver P, Ferreira JJ. The effect of skim milk, yoghurt, and full cream milk on human serum lipids. Am. J. Clin. Nutr. 34: 351-356 (1981) https://doi.org/10.1093/ajcn/34.3.351
  27. Park JH, Moon HJ, Oh JH, Lee JH, Choi KM, Cha JD, Lee TB, Lee MJ, Jung HK. Antibacterial activity of lactic acid bacteria isolated from traditional fermented foods and development of a starter for fermented milk. Korean J. Food Preserv. 20: 712-719 (2013) https://doi.org/10.11002/kjfp.2013.20.5.712
  28. Nylen ES, Faselis C, Kheirbek R, Myers J, Panagiotakos D, Kokkinos P. Statins modulate the mortality risk associated with obesity and cardiorespiratory fitness in diabetics. J. Clin. Endocr. Metab. 98: 3394-3401 (2013) https://doi.org/10.1210/jc.2013-1431
  29. Neuschwander-Tetri BA, Clark JM, Bass NM, van Natta ML, Unalp-Arida A, Tonascia J, Zein CO, Brunt EM, Kleiner DE, McCullough AJ, Sanyal AJ, Diehl AM, Lavine JE, Chalasani N, Kowdley KV, NASH Clinical Research Network. Clinical, laboratory and histological associations in adults with nonalcoholic fatty liver disease. Hepatology 52: 913-924 (2010)
  30. Son HH, Park MR, Rhee SJ. Effects of dietary xylooligosaccharides on lipoprotein lipase activity in epididymal adipose tissue and lipid composition in serum of rats fed high fat diets. Korean J. Nutr. 35: 1015-1022 (2002)
  31. Rim JCK, Kang SA. Effect of high fat and high carbohydrate diet on serum leptin and lipids concentration in rat. J. Nutr. Health 34: 123-131 (2001)
  32. Gilliland SE, Nelson CR, Maxwell C. Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol. 49: 377-381 (1985)
  33. Pal S, Ho N, Santos C, Dubois P, Mamo J, Croft K, Allister E. Red wine polyphenolics increase LDL receptor expression and activity and suppress the secretion of ApoB100 from human HepG2 cells. J. Nutr. 133: 700-706 (2003) https://doi.org/10.1093/jn/133.3.700
  34. Mahley RW, Innerarity TL, Rall Jr SC, Weisgraber KH. Plasma lipoproteins: Apoprotein structure and function. J. Lipid Res. 25: 1277-1294 (1984)
  35. Rodriguez-Cantu LN, Gutierrez-Uribe JA, Arriola-Vucovich J, Diaz-De La Garza RI, Fahey JW, Serna-Saldivar SO. Broccoli (Brassica oleracea var. italica) sprouts and extracts rich in glucosinolates and isothiocyanates affect cholesterol metabolism and genes involved in lipid homeostasis in hamsters. J. Agr. Food Chem. 59: 1095-1103 (2011) https://doi.org/10.1021/jf103513w
  36. Lee SM, Han HW, Kim YH. JNK-mediated SREBP-2 processing by genistein up-regulates LDLR expression in HepG2 Cells. J. Nutr. Food Sci. 4: 308-314 (2014)
  37. Ju HK, Cho EJ, Jang MH, Lee YY, Hong SS, Park JH, Kwon SW. Characterization of increased phenolic compounds from fermented Bokbunja (Rubus coreanus Miq.) and related antioxidant activity. J. Pharmaceut. Biomed. 49: 820-827 (2009) https://doi.org/10.1016/j.jpba.2008.12.024
  38. Kang BH, Lee KJ, Hur SS, Lee DS, Lee SH, Shin KS, Lee JM. Ginsenoside derivatives and quality characteristics of fermented ginseng using lactic acid bacteria. Korean J. Food Preserv. 20: 573-582 (2013) https://doi.org/10.11002/kjfp.2013.20.4.573
  39. Rao DR, Chawan CB, Pulusani SR. Influence of milk and themophilus milk on plasma cholesterol levels and hepatic cholesterogenesis in rats. J. Food Sci. 46: 1339-1341 (1981) https://doi.org/10.1111/j.1365-2621.1981.tb04168.x
  40. Behme MT. Leptin: Product of the obese gene. Nutr. Today 31: 138-141 (1996) https://doi.org/10.1097/00017285-199607000-00002
  41. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM. Weightreducing effects of the plasma protein encoded by the obese gene. Science 269: 543-546 (1995) https://doi.org/10.1126/science.7624777
  42. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269: 540-543 (1995) https://doi.org/10.1126/science.7624776
  43. Agheli N, Kabir M, Berni-Canani S, Petitjean E, Boussairi A, Luo J, Bornet F, Slama G, Rizkalla SW. Plasma lipids and fatty acid synthase activity are regulated by short-chain fructo-oligosaccharides in sucrose-fed insulin-resistant rats. J. Nutr. 128: 1283-1288 (1998) https://doi.org/10.1093/jn/128.8.1283
  44. Shimano H. SREBPs: Physiology and pathophysiology of the SREBP family. FEBS J. 276: 616-621 (2009) https://doi.org/10.1111/j.1742-4658.2008.06806.x
  45. Park SJ, Lee IS, Lee SP, Yu MH. Inhibition of adipocyte differentiation and adipogenesis by supercritical fluid extracts and marc from cinnamomum verum. J. Life Sci. 23: 510-517 (2013) https://doi.org/10.5352/JLS.2013.23.4.510
  46. Yuan HD, Shin EJ, Chung SH. Anti-diabetic effect and mechanism of korean red ginseng in C57BL/KsJ db/db mice. J. Ginseng Res. 32: 187-193 (2008) https://doi.org/10.5142/JGR.2008.32.3.187
  47. Murase T, Misawa K, Minegishi Y, Aoki M, Ominami H, Suzuki Y, Shibuya Y, Hase T. Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in $C_{57}BL/6J$ mice. Am J. Physiol.-Endoc. M. 300: E122-E133 (2011)
  48. Kim MJ, Hong SH, Chung L, Choe EO, Song YO. Development of lotus root bugak with plasma lipid reduction capacity by addition of Opuntia ficus-indica var. saboten or green tea as a coloring agent. J. Korean Soc. Food Sci. Nutr. 43: 333-340 (2014) https://doi.org/10.3746/jkfn.2014.43.3.333
  49. Vahouny GV, Roy T, Gallo LL, Story JA, Kritchevsky D, Cassidy M, Grund BM, Treadwell CR. Dietary fiber and lymphatic absorption of cholesterol in the rat. Am. J. Clin Nutr. 31: S208-S212 (1978) https://doi.org/10.1093/ajcn/31.10.S208

Cited by

  1. Comparison of the phenolic composition and antioxidant activity of Korean black raspberry, Bokbunja, (Rubus coreanus Miquel) with those of six other berries 2016, https://doi.org/10.1080/19476337.2016.1219390