References
- Abraham, R. and Marsden, J. E. (1987), Foundations of mechanics, Addison-Wesley.
- Arroyo, M. and Belytschko, T. (2002), "An atomistic-based finite deformation membrane for single layer crystalline films", J. Mech. Phys. Solids, 50(9), 1941-1977. https://doi.org/10.1016/S0022-5096(02)00002-9
- Atkins, P. and De Paula, J. (2006), Physical Chemistry, Oxford University Press, 8rev ed edition.
- Belytschko, T., Liu, W. K. and Moran, B. (2000), Nonlinear Finite Elements for Continua and Structures. Wiley.
- Belytschko, T., Xiao, S.P., Schatz, G.C. and Ruoff, R.S. (2002), "Atomistic simulations of nanotube fracture", Phys. Rev. B, 65(23), 235430. https://doi.org/10.1103/PhysRevB.65.235430
- Brenner, D.W. (1990), "Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films", Phys. Rev. B, 42, 9458-9471. https://doi.org/10.1103/PhysRevB.42.9458
- Brenner, D.W., Shenderova, O.A., Harrison, J.A., Stuart, S.J., Ni, B. and Sinnott, S.B. (2002), "A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons", J. Phys.: Condensed Matter, 14(4), 783. https://doi.org/10.1088/0953-8984/14/4/312
- Bedoui, F. and Cauvin, L. (2012), "Elastic properties prediction of nano-clay re- inforced polymers using hybrid micromechanical models", Comput. Mater. Sci., 65, 309-314. https://doi.org/10.1016/j.commatsci.2012.07.023
- Cadelano, E., Palla, P.L., Giordano, S. and Colombo, L. (2009), "Nonlinear elasticity of monolayer grapheme", Phys. Rev. Lett., 102, 235502. https://doi.org/10.1103/PhysRevLett.102.235502
- Caillerie, D., Mourat, A. and Raoult, A. (2006), "Discrete homogenization in graphene sheet modeling", J. Elasticity, 84, 33-68. https://doi.org/10.1007/s10659-006-9053-5
- Ericksen, J. (2008), "On the cauchyborn rule", Math. Mech.Solids, 13, 199-220. https://doi.org/10.1177/1081286507086898
- Ericksen, J.L. (1984), "The cauchy and born hypotheses for crystals. Phase transformation and material instabilities in solids" - from book 'Mechanics and Mathematics of Crystals: Selected Papers of J. L. Ericksen' by Millard F. Beatty and Michael A. Hayes, page 6177.
- Geim, A.K. and Novoselov, K.S. (2007), "The rise of grapheme", Nature Mater., 6, 183-191. https://doi.org/10.1038/nmat1849
- Gelineau, P., Stepie, M., Weigand, S., Cauvin, L. and Bdoui, F. (2015), "Elastic properties prediction of nano-clay reinforced polymer using multi-scale modeling based on a multi-scale characterization", Mech. Mater., 89, 12- 22. https://doi.org/10.1016/j.mechmat.2015.03.013
- Georgantzinos, S., Giannopoulos, G. and Anifantis, N. (2010), "Numerical investigation of elastic mechanical properties of graphene structures", Mater. Des., 31(10), 4646 -4654. https://doi.org/10.1016/j.matdes.2010.05.036
- Gmez, H., Ram, M.K., Alvi, F., Villalba, P., Stefanakos, E.L. and Kumar, A. (2011), "Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors", J. Power Sources, 196(8), 4102 -4108. https://doi.org/10.1016/j.jpowsour.2010.11.002
- Hu, K., Kulkarni, D.D., Choi, I. and Tsukruk, V.V. (2014), "Graphene-polymer nanocom- posites for structural and functional applications", Progress in Polymer Sci., 39(11), 1934- 1972. https://doi.org/10.1016/j.progpolymsci.2014.03.001
- Huang, Y., Wu, J. and Hwang, K.C. (2006), "Thickness of graphene and single-wall carbon nanotubes", Phys. Rev. B, 74, 245413. https://doi.org/10.1103/PhysRevB.74.245413
- Huet, C. (1990), "Application of variational concepts to size effects in elastic heterogeneous bodies", J. Mech. Phys. Solids, 38(6), 813- 841. https://doi.org/10.1016/0022-5096(90)90041-2
- Ibrahimbegovic, A. (1994), "Finite elastoplastic deformations of space-curved membranes", Comput. Method. Appl. M., 119, 371-394. https://doi.org/10.1016/0045-7825(94)90096-5
- Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics, Springer.
- Ibrahimbegovic, A. and Gruttmann, F. (1993), "A consistent finite element formulation of nonlinear membrane shell theory with particular reference to elastic rubberlike material", Finite Elem. Anal. Des., 12, 75-86.
- Lee, C., Wei, X., Kysar, J. and Hone, J. (2008), "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, 321(5887), 385-388. https://doi.org/10.1126/science.1157996
- Lu, Q., Gao, W. and Huang, R. (2011), "Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension", Model. Simul. Mater. Sc., 19(5), 054006. https://doi.org/10.1088/0965-0393/19/5/054006
- Lu, Q. and Huang, R. (2009), "Nonlinear mechanics of single-atomic-layer grephene sheets", Int. J. Appl. Mech., 1, 443-467. https://doi.org/10.1142/S1758825109000228
- Marenic, E., Ibrahimbegovic, A., Soric, J. and Guidault, P.A. (2013), "Homogenized elastic properties of graphene for small deformations", Materials: Special Issue "Computational Modeling and Simulation in Materials Study", 6(9), 3764-3782.
- Markovic, D. and Ibrahimbegovic, A. (2004), "On micro-macro inter- face conditions for micro scale based FEM for inelastic behavior of heterogeneous materials", Comput. Method. Appl. M., 193(48-51), 5503-5523. https://doi.org/10.1016/j.cma.2003.12.072
- Morse, P.M. (1929), "Diatomic molecules according to the wave mechanics. ii. vibrational levels", Phys. Rev., 34, 57-64. https://doi.org/10.1103/PhysRev.34.57
- Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V. and Geim, A.K. (2005), "Two-dimensional atomic crystals", PNAS, 102-30, 10451-10453.
- Reddy, C.D., Rajendran, S. and Liew, K.M. (2006), "Equilibrium configuration and continuum elastic properties of finite sized grapheme", Nanotechnology, 17(3), 864. https://doi.org/10.1088/0957-4484/17/3/042
- Ruoff, R.S., Qian, D. and Liu, W.K. (2003), "Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements", Comptes Rendus Physique, 4(9), 993-1008. https://doi.org/10.1016/j.crhy.2003.08.001
- Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I. and Seal, S. (2011), "Graphene based materials: Past, present and future", Prog. Mater. Sci., 56(8), 1178 -1271. https://doi.org/10.1016/j.pmatsci.2011.03.003
- Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S. (2006), "Graphene-based composite materials", Nature, 442(7100), 282-286. https://doi.org/10.1038/nature04969
- Tersoff, J. (1986), "New empirical model for the structural properties of silicon", Phys. Rev. Lett., 56, 632-635. https://doi.org/10.1103/PhysRevLett.56.632
- Topsakal, M. and Ciraci, S. (2010), "Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: A first-principles density- functional theory study", Phys. Rev. B, 81, 024107. https://doi.org/10.1103/PhysRevB.81.024107
- Volokh, K. (2012), "On the strength of grapheme", J. Appl. Mech.- T ASME, 79, 064501- 5. https://doi.org/10.1115/1.4005582
- Wackerfuss, J. (2009), "Molecular mechanics in the context of the finite element method", Int. J. Numer. Mett. Eng., 77, 969-997. https://doi.org/10.1002/nme.2442
- Wriggers, P. (2008), Nonlinear Finite Element Methods, Springer.
- Xu, Z. (2009), "Graphene nano-ribbons under tension", Journal of Computational and Theoretical Nanoscience, 6, 625-628. https://doi.org/10.1166/jctn.2009.1082
- Zanzotto, G. (1996), "The cauchy-born hypothesis, nonlinear elasticity and mechanical twining in crystals", Acta Crystallographica, 52, 839-849. https://doi.org/10.1107/S0108767396006654
- Zhang, K. and Arroyo, M. (2013), "Adhesion and friction control localized folding in supported grapheme", J. Appl. Phys., 113, 193501-8. https://doi.org/10.1063/1.4804265
- Zhao, H., Min, K. and Aluru, N.. (2009), "Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension", Nanoletters, 9-8, 3012-3015.
Cited by
- The effect of material density on load rate sensitivity in nonlinear viscoelastic material models pp.1432-0681, 2018, https://doi.org/10.1007/s00419-018-1448-9
- On the mechanical characteristics of graphene nanosheets: a fully nonlinear modified Morse model vol.31, pp.11, 2020, https://doi.org/10.1088/1361-6528/ab598e