DOI QR코드

DOI QR Code

Characteristics of Bond Strength in Concrete Beams Reinforced with Galvanized Rebar

용융아연도금 철근콘크리트 보의 부착강도 특성

  • Received : 2015.06.09
  • Accepted : 2015.07.28
  • Published : 2015.07.30

Abstract

Galvanizing is one of the method used to solve the problem of corrosion of reinforcement in concrete structures. There few research reported in the literature regarding the effect of galvanized coating on the behavior of lap splices in concrete beams. The objective of this study was to determine whether galvanized rebar adversely affects lap splice behavior and bond strength. Concrete beams reinforced with black or galvanized rebar were tested in flexure. The test variables included the presence of galvanized rebar steel diameter, and lengths of lap splices. The study concentrated on comparing crack, failure pattern, and bond strength. The ultimate behavior of beams reinforced with galvanized rebar was not significantly different from that of black steel reinforced beams. Therefore, the test results indicated that the use of galvanizing-coated rebar had no adverse effect on behavior in lap splices of rebar compared to the use of black rebar.

용융아연도금(galvanizing)은 콘크리트 구조물의 철근 부식 문제를 해결하기 위해 사용된다. 용융아연도금 철근 콘크리트 보의 부착강도 영향에 대한 자료는 거의 없는 실정이다. 따라서, 이 연구의 목적은 용융아연도금철근이 콘크리트 보의 부착강도에 미치는 영향을 파악하는데 있다. 용융아연도금철근을 사용한 부재와 일반철근을 사용한 부재의 구조실험을 통하여 겹침이음 거동과 부착강도 특성을 비교하였다. 실험변수로써 철근의 용융아연코팅 유무, 철근 직경과 겹침이음 길이를 고려하였다. 용융아연도금 철근콘크리트 보의 균열 및 파괴 특성을 파악하였다. 용융아연도금철근 콘크리트 보의 겹침이음부 휨 거동특성은 일반철근 콘크리트 보의 겹침이음부 휨거동과 유사한 것으로 나타난다. 또한, 용융아연도금철근의 사용은 일반철근을 사용할 때에 비해 콘크리트 보의 부착강도에 불리한 영향을 미치지는 않는 것으로 나타났다.

Keywords

References

  1. Cairns, J., and Abdullah, R. B., "Bond Strength of Black and Epoxy-Coated Reinforcement-A Theoretical Approach," ACI Materials Journal, Vol. 93, No. 4, 1996, pp. 362-369.
  2. Cheng, A., Huang, R., Wu, J. K. and Chen, C. H. "Effect of Rebar Coating on Corrosion Resistance and Bond Strength of Reinforced Concrete," Construction and Building Materials, Vol. 19, 2005, pp. 404-412. https://doi.org/10.1016/j.conbuildmat.2004.07.006
  3. Choi, O. C., Hadje-Ghaffari, H., Darwin, D. and McCabe, S. L. "Bond of Epoxy-Coated Reinforcement Bar Parameters," ACI Materials Journal, Vol. 88, No. 2, 1990, pp. 207-217.
  4. Choi, D. W., Chun, S. C., and Ha S.S. "Splice length of GFRP rebars based on flexural tests of unconfined RC members" Journal of the Korea Concrete Institute, Vol. 21, No. 1, 2009, pp. 65-74. https://doi.org/10.4334/JKCI.2009.21.1.065
  5. Cook, A. R. and Ranke, S. F., Chloride Corrosion of Steel in Concrete, ASTM-STP 629, American Society for Testing Materials, Philadelphia, 1977, 51 pp.
  6. Dong, S. G., Zhao, B., Lin, C. J., Du, R. G., Hu, R. G. and Zhang G. X., "Corrosion Behavior of Epoxy/Zinc Duplex Coated Rebar Embedded in Concrete in Ocean Environment," Construction and Building Materials, Vol. 28, 2012, pp. 72-78. https://doi.org/10.1016/j.conbuildmat.2011.08.026
  7. Hamad, B. S. and Mike, J. A. "Bond Strength of Hot-Dip Galvanized Reinforcement in Normal Strength Concrete Structures," Construction and Building Materials, Vol. 19, 2005, pp. 275-283. https://doi.org/10.1016/j.conbuildmat.2004.07.008
  8. Hadje-Ghaffari, H., Choi, O. C., Darwin, D., McCabe, S. L. "Bond of Epoxy-Coated Reinforcement: Cover, Casting Position, Slump, and Consolidation," ACI Structural Journal, Vol. 91, No. 1, 1994, pp. 59-68.
  9. Hong, G.H, Kim, J.A, and Choi, O.C. "Bond strength evaluation of RC beams the rib shape of reinforcing bars", Journal of the Korea Concrete Institute, Vol. 23, No. 3, 2011, pp. 393-400. https://doi.org/10.4334/JKCI.2011.23.3.393
  10. Idun, E. K. and Darwin, D. "Bond of Epoxy-Coated Reinforcement: Coefficient of Friction and Rib Face Angle," ACI Structural Journal, Vol. 96, No.4, 1999, pp. 609-615.
  11. Jalili, M. M., Moradian, S. and Hosseinpour, D. "The Use of Inorganic Conversion Coatings to Enhance the Corrosion Resistance of Reinforcement and the Bond Strength at the Rebar/Concrete," Construction and Building Materials, Vol. 28, 2012, pp. 72-78. https://doi.org/10.1016/j.conbuildmat.2011.08.026
  12. Kayali, O. and Yeomans, S. R. "Bond of Ribbed Galvanized Reinforcing Steel in Concrete," Cement & Concrete Composites, Vol. 22, 2000, pp. 459-467. https://doi.org/10.1016/S0958-9465(00)00049-4
  13. Korea Concrete Institute, Concrete Design Code, Kimoondang Publishing Company, Seoul, 2012, pp. 145-146.
  14. Maahn, E. and Sorensen, B., "Influence of Microstructure on the Corrosion Properties of Hot-Dip Galvanized Reinforcement in Concrete," Corrosion-NACE, Vol. 42, No. 4, 1986, pp. 187-196. https://doi.org/10.5006/1.3585996
  15. Manna, M, Bandyopadhyay, N. and Bhattacharjee, D. "Effect of Plating Time for Electroless Nickel Coating on Rebar Surface: An Option for Application in Concrete Structure," Surface & Coating Technology, Vol. 202, 2008, pp. 3227-3232. https://doi.org/10.1016/j.surfcoat.2007.11.039
  16. Selvaraj, R., Selvaraj, M. and Iyer, S. V. K. "Studies on the Evaluation of the Performance of Organic Coatings Used for the Prevention of Corrosion of Steel Rebars in Concrete Structures," Progress in Organic Coatings, Vol. 64, 2009, pp.454-459. https://doi.org/10.1016/j.porgcoat.2008.08.005
  17. Wu, C., Chen, G., Volz, J. S., Brow, R. K. and Koenistein, M. L. "Global Bond Behavior of Enamel-Coated Rebar in Concrete Beams with Spliced Reinforcement," Construction and Building Materials, Vol. 40, 2013, pp. 793-801 https://doi.org/10.1016/j.conbuildmat.2012.11.076

Cited by

  1. 칼슘용출 열화 조건에서 광물질 혼화재를 사용한 RC부재의 휨 거동에 관한 실험적 연구 vol.22, pp.2, 2015, https://doi.org/10.11112/jksmi.2018.22.2.016