References
- Oh, B. H., Han, S. H., Park, S. H., Lee, Y. H. (1993), Experimental Study of Freezing and Thawing Characteristics of Concrete Influenced by Air Content and Water Cement Ratio, Journal of the Korea Concrete Institute, 5(2), 91-96.
- Huaishuai, S., Yupu, S., Jinping, O. (2009), Behavior of Air-Entrained Concrete after Freeze-Thaw Cycles, Acta Mechanica Solida Sinica, 22(3), 261-266. https://doi.org/10.1016/S0894-9166(09)60273-1
- Cai, H., Liu, X. (1998), Freeze-Thaw Durability of Concete: Ice Formation Process in Pores, Cement and Concrete Research, 28(9), 1281-1287. https://doi.org/10.1016/S0008-8846(98)00103-3
- Pigeon, M., Pleau, R. (1992), Durability of concrete in cold climates, London: E&FN Spon, 12-23.
- Kumar Mehta, P., Paulo J. M. (2005), Conrete (Microstructure, Properties, and Materials), McGraw-Hill, 135-141.
- Olivier, C., Paulo J. M. (2008), Poroelastic model for concrete exposed to freezing temperatures, Cement and Concrete Research, 38(1), 40-48. https://doi.org/10.1016/j.cemconres.2007.06.006
- Valenza, J. J., Scherer, G. W. (2006), Mechanism for salt scaling, Journal of the American Ceramic Society, 89(4), 1161-1179. https://doi.org/10.1111/j.1551-2916.2006.00913.x
- Valenza II, J. J., Scherer, G. W. (2007), A review of salt scaling: II. Mechanisms, Cement and Concrete Research, 37(7), 1022-1034. https://doi.org/10.1016/j.cemconres.2007.03.003
- Chung, C. W., Shon, C. S., Kim, Y. S. (2010), Chloride ion diffusivity of fly ash and silica fume concretes exposed to freeze-thaw cycles, Construction and Building Materials, 24(9), 1739-1745. https://doi.org/10.1016/j.conbuildmat.2010.02.015
- Xianming, S., Ning, X., Keith, F., Jing, G. (2012), Durability of steel reinforced concrete in chloride environments: An overview, Construction and Building Materials, 30, 125-138. https://doi.org/10.1016/j.conbuildmat.2011.12.038
- Allahverdi, A., Mohammad, M. B., Khandaker M. H., Mohamed, L. (2014), Resistance of chemically-activated high phosphorous slag content cement against freeze-thaw cycles, Cold Regions Science and Technology, 103, 107-114 https://doi.org/10.1016/j.coldregions.2014.03.012
- Khan, M. (2010), Nanostructure and microstructure of cement concrete incorporating multicementitious composites, Transportation Research Record, 2141, 21-27. https://doi.org/10.3141/2141-05
- Yang, C. C., Cho, S. W. (2003), An electrochemical method for accelerated chloride migration test of diffusion coefficient in cement-based materials, Materials Chemistry and Physics, 81(1), 116-125. https://doi.org/10.1016/S0254-0584(03)00159-7
- So, H. S., Oh, J. S., Park, K. B. (2011), Permeability and transport mechanisms of media into concrete, Korea infrastructure safety corporation, KISTEC., 37(1), 53-77.
- Winslow, D. N., Diamond, S. (1970), A Mercury Porosimetry study of the Evolution of Porosity in Cement, Journal of Materials, American Society for Testing and Materials., 5(3), 564-585.
- Ritter, H. L., Drake, L. C. (1949), Pore-size Distribution in Porous Materials, Industrial and Engineering Chemistry, 41(4), 780-785 https://doi.org/10.1021/ie50472a024
- Stark, J., Bollmann, K. (1999), Delayed ettringite formation in concrete, Nordic Concrete Research, 23(2), 18-19
- Lee, S. H., Kim, H. D. (2010), A Durability Assessment on Complex Deterioration of Concrete with Ground Granulated Blast-Furnace Slag Replacement, Journal of the Korea Institute for Structural Maintenance Inspection, 14(2), 171-175
Cited by
- Assessing the Effects of Steelmaking Slag Powder on the Pore Structure and Durability of Concrete vol.21, pp.1, 2015, https://doi.org/10.9798/kosham.2021.21.1.1