DOI QR코드

DOI QR Code

Effects of Fouling Reduction by Intermittent Aeration in Membrane Bioreactors

MBR에서 간헐포기에 의한 오염저감 효과

  • Received : 2015.05.21
  • Accepted : 2015.06.22
  • Published : 2015.06.30

Abstract

The effects of relaxation and backwashing on fouling in ultrafiltration were investigated using full-scale membrane bioreactors (MBRs) which operated at a constant flux of 30 LMH. This paper also estimated the feasibility of using intermittent aeration strategies for minimizing the hydraulic resistance to filtration in comparison with the continuous aeration for running MBRs. Multiple cycles of filtration (14.5 min each) and relaxation (0.5 min each) were repeated. Similarly, a backwash was conducted by replacing a relaxation after each filtration cycle for the comparative performance test. The attached cake thickness on the membrane rapidly increased, caused by subsequent no aeration leading to easier combining with gel layer and the formation of heterogeneous layer on the membrane surface. During periodic backwashing, it is expected that gel and thin cake layer might sufficiently be removed by heterogeneous layer. After periodic backwashing, subsequent cake layer formation during time of no aeration was rapid than frequent no aeration, acting as a prefilter and preventing further irreversible fouling. Based on the Pearson correlation analysis, overall period fouling (dTMP/min) and average of all cycles (dTMP/min) were strongly correlated with the on-off period of aeration for operating MBRs.

30 LMH의 정유량 플럭스로 운전하는 MBR에서, 휴지 및 역세정에 따른 한외여과 분리막의 오염을 조사하였다. 또한, 연속적인 공기세정과 비교하여 분리막 여과저항을 최소화하기 위한 간헐적인 공기세정을 평가하였다. 여과 조건은 14.5분 여과와 0.5분의 휴지를 유지하였으며, 역세정 시간은 휴지 시간과 동일하게 운전하였다. 공기세정이 정지하는 동안에 분리막 표면의 겔층 위에 케?이 빠르게 축척되었으며, 역세정으로 겔층과 케?층의 복합층은 쉽게 제거되었다. 역세정 후에 공기세정이 정지하는 동안 분리막 표면에 케?이 형성되어 공경 내부의 오염현상을 억제하였다. Pearson 상관성을 조사한 결과, 간헐적인 공기세정에서 공기 세정이 정지하는 시간과 분리막의 오염은 매우 연관성이 높다는 것을 알았다. 즉, 간헐적인 세정에서 공기세정이 정지하는 시간이 갈수록 오염억제에 효과적이었다.

Keywords

References

  1. S. Judd, "The MBR Book: Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment", pp. 2-17, Elservier, Oxford (2006).
  2. I. H. Cho and J. T. Kim, "Trends in the Technology and Market of Membrane Bioreators (MBR) for Wastewater Treatment and Reuse and Development Directions", Membr. J., 23, 24 (2013).
  3. M. Gauder, B. Jefferson, and S. Judd, "Aerobic MBRs for domestic wastewater treatment: a review with cost consideration", Sep. Purif. Technol., 18, 119 (2000). https://doi.org/10.1016/S1383-5866(99)00056-8
  4. R. W. Field, D. Wu, J. A. Howell, and B. B. Gupta, "Critical flux concept for microfiltration fouling", J. Membr. Sci., 100, 259 (1995). https://doi.org/10.1016/0376-7388(94)00265-Z
  5. S. Ognier, C. Wismewski, and A. Grasmick, "Membrane bioreactor fouling in sub-critical filtration condition: a local critical flux concept", J. Membr. Sci., 229, 171 (2004). https://doi.org/10.1016/j.memsci.2003.10.026
  6. T. Ueda, K. Hata, and Y. Kikuoka, "Effects of aeration on suction pressure in a submerged membrane bioreactor", Water Res., 31, 489 (1997). https://doi.org/10.1016/S0043-1354(96)00292-8
  7. C. Albasi, Y. Bessiere, S. Desclauc, and J. C. Remigy, "Filtration of biological sludge by immerged hollow-fiber membranes: influence of initial permeability choice of operationg conditions", Desalination, 146, 427 (2002). https://doi.org/10.1016/S0011-9164(02)00527-1
  8. P. Schoeberl, M. Brik, M. Bertoni, R. Braun, and W. Fuchs, "Optimization of operation parameters for a submerged membrane bioreactor treating dyehouse wastewater", Sep. Purif. Technol., 44, 61 (2005). https://doi.org/10.1016/j.seppur.2004.12.004
  9. E. Bouhabila, B. Aim, and H. Buisson, "Fouling characterization in membrane bioreactor", Sep. Purif. Technol., 22-23, 123 (2001). https://doi.org/10.1016/S1383-5866(00)00156-8
  10. J. Y. Park and J. H. Hwang, "Hybrid water treatment of photocatalyst coated polypropylene beads and ceramic membranes: effect of membrane and water back-flushing period", Membr. J., 23, 211 (2013).
  11. S. S. Madaeni, "Membrane filtration of biological and nonbiological colloids", PhD Dissertation, Univ. of New South Wales, Sydney (1995).
  12. A. G. Fane, "Ultrafiltration of suspension", J. Membr. Sci., 20, 249 (1984). https://doi.org/10.1016/S0376-7388(00)82002-5
  13. L. Mo, X. Huang, and J. Wu, "Effect of operational conditions on membrane permeability in a coagulation-microfiltration process for water purification", J. Environ. Sci. Health, A37, 272 (2000).
  14. S. Judd, H. Alvarez-Vazquez, and B. Jefferson, "The impact of intermittent aeration on the operation of aie-lift tubular membrane bioreactor under sub-critical conditions", Sep. Sci. Technol., 41, 1293 (2006). https://doi.org/10.1080/01496390600634541
  15. F. Fan and H. Zhou, "Interrelated effects of aeration and mixed liquor fractions on membrane fouling for submerged membrane bioreactor processes in wastewater treatment", Environ. Sci. Technol., 41, 2523 (2007). https://doi.org/10.1021/es062035q
  16. O. S. Kwon, H. S. Yoon, Y. K. Choi, and S. H. Noh, "Variation of superficial velocity of a submerged module (YEF) by module size and aerator types", Desalination, 233, 319 (2008). https://doi.org/10.1016/j.desal.2007.09.057
  17. Y. K. Choi, O. S. Kwon, H. S. Park, and S. H. Noh, "Mechanism of gel layer removal for intermittent aeration in the MBR process", Membr. J., 16, 188 (2006).
  18. O. S. Kwon, H. M. Yang, Y. K. Choi, and S. H. Noh, "Fouling control of a submerged membrane module (YEF) by filtration modes", Desalination, 234, 81 (2008). https://doi.org/10.1016/j.desal.2007.09.073
  19. Y. K. Choi, C. S. Kim, O. S. Kwon, and S. H. Noh, "Fouling mechanisms of an end-free submerged membrane (Yonsei End Free; YEF) module under different filtration modes", Desalination, 247, 108 (2009). https://doi.org/10.1016/j.desal.2008.12.017
  20. M. Cheryan, "Ultrafiltration and microfiltration handbook", Techomic Publishing Company, Illinois (1998).
  21. P. Le-Clech, B. Jefferson, and S. J. Judd, "Impact of aeration, solids concentration and membrane characteristics on the hydraulic performance of a membrane bioreactor", J. Membr. Sci., 218, 117 (2003). https://doi.org/10.1016/S0376-7388(03)00164-9
  22. S. Rosenberger, H. Evenblij, S. te Poele, T. Wintgens, and C. Laabs, "The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge processes-six case studies of different European research groups", J. Membr. Sci., 263, 113 (2005). https://doi.org/10.1016/j.memsci.2005.04.010
  23. H. P. Chu and H. Li, "Membrane fouling in a membrane bioreactor (MBR): sludge cake formation and fouling characteristics", Biotechnol. Bioeng., 90, 323 (2005). https://doi.org/10.1002/bit.20409
  24. X. Huang, R. Liu, and Y. Qian, "Behavior of soluble microbial products in a membrane bioreactor", Process Biochem., 36, 401 (2000). https://doi.org/10.1016/S0032-9592(00)00206-5
  25. U. Metzger, P. Le-Chech, R. M. Stuetz, F. H. Frimmel, and V. Chen, "Characterisation of polymeric fouling in membrane bioreactors and the effect of different filtration modes", J. Membr. Sci., 301, 180 (2007). https://doi.org/10.1016/j.memsci.2007.06.016
  26. J. Wu, P. Le-Clech, R. M. Stuetz, A. Fane, and V. Chen, "Effects of relaxation and backwashing conditions on fouling in membrane bioreactor", J. Membr. Sci., 324, 26 (2008). https://doi.org/10.1016/j.memsci.2008.06.057
  27. B. Zhang, K. Yamamoto, S. Ohgaki, and N. Kamiko, "Floc size distribution and bacterial activates in membrane separation activated sludge processes for small-scale wastewater treatment/reclamation", Wat. Sci. Tech., 35, 37 (1997).
  28. C. Wisniewski and A. Grasmick, "Floc size distribution in a membrane bioreactor and consequences for membrane fouling", Colloids and Surfaces A, 138, 403 (1998). https://doi.org/10.1016/S0927-7757(96)03898-8
  29. R. Bai and H. F. Leow, "Microfiltration of activated sludge wastewater-the effect of system operation parameters", Sep. Purifi. Technol., 29, 189 (2002). https://doi.org/10.1016/S1383-5866(02)00075-8
  30. J. Wu, P. Le-Clech, R. M. Stuetz, A. Fane, and V. Chen, "Novel filtration mode for fouling limitation in membrane bioreactor", Water Res., 42, 3677 (2008). https://doi.org/10.1016/j.watres.2008.06.004