DOI QR코드

DOI QR Code

Combined Effects of Filter-feeding Bivalve and Zooplankton on the Growth Inhibition of Cyanobacterium Microcystis aeruginosa

남세균 제어를 위한 동물플랑크톤(Daphnia magna)과 패류(Unio douglasiae)의 단독 및 혼합적용

  • Received : 2015.03.29
  • Accepted : 2015.06.05
  • Published : 2015.06.30

Abstract

Single - and combined effects of a domestic freshwater bivalve Unio douglasiae (7.6~8.6 cm in shell length) and zooplankton Daphnia magna (1~2 mm in body size) were examined to understand whether they inhibit the growth of harmful cyanobacterial bloom (i.e. Microcystis aeruginosa) in a eutrophic lake. The experiments were triplicated with twelve glass aquaria (40 L in volume); three aquaria without mussel and zooplankton, served as a control, three zooplankton aquaria (Z, density=40 indiv. $L^{-1}$), three mussel aquaria (M, density=0.5 indiv. $L^{-1}$), and three mussel plus zooplankton aquarium (ZM, density=40 indiv.Z $L^{-1}$ plus 0.5 indiv.M/L), respectively. Algal growth inhibition (%) calculated as a difference in the concentration of chlorophyll-a (Chl-a) before and after treatment. Chl-a in all aquaria decreased with the time, while a greatest algal inhibition was seen in the ZM aquaria. After 24 hrs of incubation, Chl-a concentration at the mid-depth (ca. 15 cm) in ZM aquaria reduced by 90.8% of the control, while 63.2% and 79.8% in Z and M aquaria, respectively. Interestingly, during the same period, the surface Chl-a was diminished by 51.9% and 65.4% relative to the control in Z and ZM aquaria, while 27.4% of initial concentration decreased in M aquarium, respectively. These results suggest that 1) this domestic freshwater filter-feeding bivalve plays a significant role in the control of cyanobacterial bloom (M. aeruginosa), and 2) the combination with zooplankton and mussel has a synergistic effect to diminish them, compared to the single treatment of zooplankton and mussel.

유해조류의 생물학적 제어를 위하여 여과능이 입증된 패류와 동물플랑크톤을 혼합적용하고, 현장적용 가능성을 검토하였다. 실험수는 매년 남조 Microcystis aeruginosa가 대발생하는 일감호 (서울)의 현장수, sediment, 배지를 대형 수조에 일정량 넣고 인위적으로 조류대발생을 일으켜 유지하고 있는 실험수를 이용하였다. 실험은 동물플랑크톤만 처리한 Z군 (40 individuals $L^{-1}$), 패류만 처리한 M군 (2 individuals $L^{-1}$), 동물플랑크톤과 패류를 모두 첨가한 ZM군 (Z, M군의 밀도를 합한 것)으로 설계하였다. 수심별 조류제어 효과를 확인하기 위하여 표층, 중층에서 각각 일정량의 실험수를 꺼내 엽록소량의 경시적 변화를 측정하였다. 결과, 중층의 모든 처리구에서 Chl-a의 감소를 보였으며 24시간째 Z군은 63.2%의 제어율을 보인 반면, M군과 ZM군은 각각 79.8%, 90.8%의 제어율을 나타내 뚜렷한 억제효과를 보였다. 표층의 경우, Z군과 ZM군은 각각 51.9%, 63.4% 등으로 50% 이상의 억제효과를 보인 반면, M군의 경우 대조군의 27.4%로서 가장 낮은 제어율을 보였다. 결과를 종합하면, 두 생물제재의 혼합이 수층에 상관없이 그 효과는 입증되었으나 남조 M. aeruginosa의 부유성을 감안한다면, 패류의 적용수심이 조류제어에 매우 중요한 인자임을 알 수 있었다. 따라서 생물제재의 혼합적용이 보다 높은 효과를 보였으며 조류의 생리적 특성과 생물제재간의 상호관계에 대한 세밀한 연구가 요구되었다.

Keywords

References

  1. Choi, H.J., B.H. Kim, J.D. Kim and M.S. Han. 2005. Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters. Biological Control 33: 335-343. https://doi.org/10.1016/j.biocontrol.2005.03.007
  2. Codd, G.A., L.F. Morrison and J.S. Metcalf. 2005. Cyanobacterial toxins: risk management for health protection. Toxicology and Applied Pharmacology 203: 264-272. https://doi.org/10.1016/j.taap.2004.02.016
  3. Cotner, J.B., W.S. Gardner, J.R. Johnson, R.H. Sada, J.F. Cavaletto and R.T. Health. 1995. Effects of zebra mussels (Dreissena polymorpha) on bacterioplankton: evidence for both size-selective consumption and growth stimulation. Journal of Great Lakes Research 21: 517-528. https://doi.org/10.1016/S0380-1330(95)71063-2
  4. Coughlan, J. 1969. The estimation of filtration rates from the clearance of suspensions. Marine Biology 2: 256-258.
  5. Crowder, L.B., R.W. Drenner, W.C. Kerfoot, D.J. McQueen, E.L. Milis, U. Sommer, C.N. Spencer and M.J. Vanni. 1988. Food web interactions in lakes. p. 141-160. In: Complex interactions in lake communities (Carpenter, S.R. ed.). Springer-Verlag, New York.
  6. Culver, D.A., M.M. Boucherle, D.J. Bean and J.W. Fletcher. 1985. Biomass of freshwater crustacean zooplankton from length-weight regressions. Canadian Journal of Fisheries and Aquatic Sciences 42: 1380-1390. https://doi.org/10.1139/f85-173
  7. Dame, R.F. 1996. Ecology of marine bivalves: an ecosystem approach. CRC Press. Boca Raton, FL, 254pp.
  8. Dawidowicz, P., Z.M. Gliwicz, and R.D. Gulati. 1988. Can Daphnia prevent a blue-green algal bloom in hypertrophic lakes? A laboratory test. Limnologica 19: 21-26.
  9. DeMott, W.R., Q. Zhang and W.W. Carmichael. 1991 Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnology and Oceanography 36(7): 1346-1357. https://doi.org/10.4319/lo.1991.36.7.1346
  10. DeMott, W.R. 1999. Foraging strategies and growth inhibition in five daphnids feeding on mixtures of a toxic cyanobacterium and a green alga. Freshwater Biology 42: 263-274. https://doi.org/10.1046/j.1365-2427.1999.444494.x
  11. Dionisio Pires, L.M., B.M. Bontes, L. Samchyshyna, J. Jong, E. Van Donk and B.W. Ibelings. 2007. Grazing on microcystin-producing and microcystin-free phytoplankters by different filter-feeders: implications for lake restoration. Aquatic Science 69: 534-543. https://doi.org/10.1007/s00027-007-0916-z
  12. Dodson, S.I. 1974. Adaptive change in plankton morphology in response to size selective predation: A new hypothesis of cyclomorphosis. Limnology and Oceanography 19: 721-729. https://doi.org/10.4319/lo.1974.19.5.0721
  13. Fahnenstiel, G.L., T.B. Bridgeman, G.A. Lang, M.J. McCormick and T.F. Nalepa. 1995. Phytoplankton productivity in Saginaw Bay, Lake Huron: effects of zebra mussel (Dreissena polymorpha) colonization. Journal of Great Lakes Research 21: 465-475.
  14. Foster-Smith, R.L. 1975. The effect of concentration of suspension and inert material on the assimilation of algae by three bivalves. Journal of the Marine Biological Association of the United Kingdom 55: 411-418 https://doi.org/10.1017/S0025315400016027
  15. Gulati, R.D. and E. Van Donk. 2002. Lakes in the Netherlands, their origin, eutrophication and restoration: state of the art review. Hydrobiologia 478: 73-106. https://doi.org/10.1023/A:1021092427559
  16. Heath, R.T., G.L. Fahnenstiel, W.S. Gardner, J.F. Cavaletto and S.J. Hwang. 1995b. Ecosystem-level effects of zebra mussel (Dreissena polymorpha): an enclosure experiment in Saginaw Bay, Lake Huron. Journal of Great Lakes Research 21: 501-516. https://doi.org/10.1016/S0380-1330(95)71062-0
  17. Holland, R.E. 1993. Changes in plankton diatoms and water transparency on Hatchery Bay, Bass Island area, western Lake Erie since the establishment of the zebra mussel. Journal of Great Lakes Research 19: 617-624. https://doi.org/10.1016/S0380-1330(93)71245-9
  18. Hwang, S.J. 1996. Effects of zebra mussel (Dreissena polymorpha): on phytoplankton and bacterioplankton : Evidence for size-selective grazing. Korean Journal of Limnology 29: 363-378.
  19. Hwang, S.J., M.J Jeon, N.Y. Kim and B.H. Kim. 2008. Grazing rate and pseudofeces production of native snail Cipangopaludina chinensis malleata Reeve on toxic cyanobacterium Microcystis aeruginosa. Korean Journal of Limnology 41: 77-85.
  20. Ibelings, B.W., M. Vonk, H.F.J. Los, D.T.V.D. Molen and W.M. Mooij. 2003. Fuzzy modeling of cyanobacterial surface waterblooms: Validation with NOAA-AVHRR satellite images. Ecological Application 13: 1456-1472. https://doi.org/10.1890/01-5345
  21. Kim, B.H., M.K. Choi and N. Takamura. 2003. Phytoplankton preferences of young silver carp, Hypophthalmichthys molitrix, in hypereutrophic mesocosms during a warm season. Journal of Freshwater Ecology 18(1): 69-77. https://doi.org/10.1080/02705060.2003.9663952
  22. Kurmayer, R. and F. Juttner. 1999. Strategies for the co-existence of zooplankton with the toxic cyanobacterium Planktothrix rubescens in Lake Zurich. Journal of Plankton Research 21: 659-683. https://doi.org/10.1093/plankt/21.4.659
  23. Lampert, W., W. Fleckner and H. Rai. 1986. Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase. Limnology and Oceanography 31: 478-490 https://doi.org/10.4319/lo.1986.31.3.0478
  24. Laverentyev, P.J., W.S. Gardner, J.F. Cavaletto, and J.R. Beaver. 1995. Effects of the zebra mussel (Dreissena polymorpha Pallas) on ptotozoa and phytoplankton from Sagniaw Bay, Lake Huron. Journal of Great Lakes Research 21: 545-557. https://doi.org/10.1016/S0380-1330(95)71065-6
  25. Lee, S.H., S.J. Hwang and B.H. Kim. 2008. Combined effects of biological control agent two native shellfish on the hibernal diatom bloom of eutrophic water. Korean Journal of Limnology 41(3): 402-411.
  26. Loo, L.O. and R. Rosenberg. 1989. Bivalve suspension feeding dynamics and benthic-pelagic coupling in an eutrophicated marine bay. Journal of Experimental Marine Biology and Ecology 130: 253-273. https://doi.org/10.1016/0022-0981(89)90167-6
  27. Lurling, M. 2003. Daphnia growth on microcystin-producing and microcystin-free Microcystis aeruginosa in different mixtures with the green alga Scenedesmus obliquus. Limnology and Oceanography 48: 2214-2220. https://doi.org/10.4319/lo.2003.48.6.2214
  28. Lurling, M. and A.M. Verschoor. 2003. Fo-spectra of chlorophyll fluorescence for the determination of zooplankton grazing. Hydrobiologia 491: 145-157. https://doi.org/10.1023/A:1024436508387
  29. Lurling, M. and E. Van Donk. 1996. Zooplankton-induced unicell-colony transformation in Scenedesmus acutus and its effect on growth of herbivore Daphnia. Oecologia 108: 432-437. https://doi.org/10.1007/BF00333718
  30. Meijer, M.L. 2000. Biomanipulation in the Netherlands - 15 years of experience. Ph.D. Thesis. Wageningen Agricultural University, Wageningen, The Netherlands. 208 pp.
  31. Nicholls, K.H. and G.J. Hopkins. 1993. Recent changes in Lake Erie (north shore) phytoplankton: cumulative impacts of phosphorus loading reductions and the zebra mussel introduction. Journal of Great Lakes Research 19: 637-647. https://doi.org/10.1016/S0380-1330(93)71251-4
  32. Noordhius, R., H. Reeders and A.B.D. Vaate. 1992. Relationship between carbon content, cell volume and area in phytoplankton. Limnology and Oceanography 11: 307-311.
  33. Reeders, H.H. and A.B.D. Vaate. 1990. Zebra mussel (Dreissena polymorpha): a new perspective for water quality management. Hydrobiologia 200/201: 437-450. https://doi.org/10.1007/BF02530361
  34. Rohrlack, T., E. Dittmann, T. Borner and K. Christoffersen. 2001. Effects of cell-bound microcystins on survival and feeding of Daphnia spp. Applied and Environmental Microbiology 67: 3523-3529. https://doi.org/10.1128/AEM.67.8.3523-3529.2001
  35. Sinonen, K. and G. Jones. 1999. Cyanobacterialtoxins. In: Toxic Cyanobacteria in Water (Chorus, I. and J. Bartram, eds.). pp. 41-111. WHO, Geneva.
  36. Soto, D. and G. Mena. 1999. Filter feeding by the freshwater mussel, Diplodon chilensis, as a biocontrol of salmon farming eutrophication. Aquaculture 171: 65-81. https://doi.org/10.1016/S0044-8486(98)00420-7
  37. Sprung, M. and U. Rose.1988. Influence of food size and food quality on the feeding of the mussel Dreissena polymorpha. Oecologia 77: 526-532. https://doi.org/10.1007/BF00377269
  38. Strayer, D.L., N.F. Caraco, J.F. Cole, S. Findlay and M.L. Pace. 1999. Transformation of freshwater ecosystems by bivalves. Bioscience 49: 19-27. https://doi.org/10.2307/1313490
  39. Vanni, M.J. and J. Temte. 1990. Seasonal patterns of grazing and nutrient limitation of phytoplankton in a eutrophic lake. Limnology and Oceanography 35: 697-709. https://doi.org/10.4319/lo.1990.35.3.0697
  40. Winter, J.E. 1978. A review of the knowledge of suspension-feeding in lamellibranchiate bivalves, with special reference to artificial aquaculture systems. Aquaculture 13: 1-33. https://doi.org/10.1016/0044-8486(78)90124-2