DOI QR코드

DOI QR Code

NON-ABELIAN TENSOR ANALOGUES OF 2-AUTO ENGEL GROUPS

  • MOGHADDAM, MOHAMMAD REZA R. (DEPARTMENT OF MATHEMATICS MASHHAD BRANCH, ISLAMIC AZAD UNIVERSITY / DEPARTMENT OF MATHEMATICS KHAYYAM UNIVERSITY AND CENTRE OF EXCELLENCE IN ANALYSIS ON ALGEBRAIC STRUCTURES FERDOWSI UNIVERSITY OF MASHHAD) ;
  • SADEGHIFARD, MOHAMMAD JAVAD (DEPARTMENT OF MATHEMATICS MASHHAD BRANCH, ISLAMIC AZAD UNIVERSITY)
  • Received : 2013.11.20
  • Published : 2015.07.31

Abstract

The concept of tensor analogues of right 2-Engel elements in groups were defined and studied by Biddle and Kappe [1] and Moravec [9]. Using the automorphisms of a given group G, we introduce the notion of tensor analogue of 2-auto Engel elements in G and investigate their properties. Also the concept of $2_{\otimes}$-auto Engel groups is introduced and we prove that if G is a $2_{\otimes}$-auto Engel group, then $G{\otimes}$ Aut(G) is abelian. Finally, we construct a non-abelian 2-auto-Engel group G so that its non-abelian tensor product by Aut(G) is abelian.

Keywords

References

  1. D. P. Biddle and L. C. Kappe, On subgroups related to the tensor center, Glasg. Math. J. 45 (2003), no. 2, 323-332. https://doi.org/10.1017/S0017089503001277
  2. R. Brown, D. L. Johnson, and E. F. Robertson, Some computations of nonabelian tensor products of groups, J. Algebra 111 (1987), no. 1, 177-202. https://doi.org/10.1016/0021-8693(87)90248-1
  3. R. Brown and J. L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987), no. 3, 311-335. https://doi.org/10.1016/0040-9383(87)90004-8
  4. The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.7.5, 2014, (http://www.gap-system.org/).
  5. P. V. Hegarty, The absolute centre of a group, J. Algebra 169 (1994), no. 3, 929-935. https://doi.org/10.1006/jabr.1994.1318
  6. W. P. Kappe, Dia A-Norm einer Gruppe, Illinois J. Math. 5 (1961), 187-197.
  7. M. R. R. Moghaddam, M. Farrokhi D. G., and H. Safa, Some Properties of 2-auto Engel groups, to appear in Quaestiones Mathematicae.
  8. M. R. R. Moghaddam, F. Parvaneh, and M. Naghshineh, The lower autocentral series of abelian groups, Bull. Korean Math. Soc. 48 (2011), no. 1, 79-83. https://doi.org/10.4134/BKMS.2011.48.1.079
  9. P. Moravec, On nonabelian tensor analogues of 2-Engel conditions, Glasg. Math. J. 47 (2005), no. 1, 77-86. https://doi.org/10.1017/S0017089504002083
  10. M. Naghshineh, M. R. R. Moghaddam, and F. Parvaneh, Third term of the lower auto-central series of abelian groups, J. Math. Ext. 4 (2009), no. 1, 1-6.
  11. M. M. Nasrabadi and A. Gholamian, On non abelian tensor analogues of 3-Engel groups, Indag. Math. 23 (2012), no. 3, 337-340. https://doi.org/10.1016/j.indag.2012.01.004
  12. M. M. Nasrabadi, A. Gholamian, and M. J. Sadeghifard, On some subgroups associated with the tensor square of a group, Int. J. Group Theory 2 (2013), no. 2, 25-33.