References
- B. Adamczewski, C. Frougny, A. Siegel, and W. Steiner, Rational numbers with purely periodic beta-expansion, Bull. London Math. Soc. 42 (2010), no. 3, 538-552. https://doi.org/10.1112/blms/bdq019
- S. Akiyama, Pisot number and greedy algorithm, Number Theory (Eger, 1996), 9-21, de Gruyter, 1998.
- P. Bateman and A. L. Duquette, The analogue of the Pisot-Vijayaraghavan numbers in fields of formal power series, Illinois J. Math. 6 (1962), 594-606.
- D. W. Boyd, Salem numbers of degree four have periodic expansions, Theorie des nombres (Quebec, PQ, 1987), 57-64, de Gruyter, Berlin, 1989.
- D. W. Boyd, On the beta expansion for Salem numbers of degree 6, Mathematics of Computation 65 (1996), no. 214, 861-875. https://doi.org/10.1090/S0025-5718-96-00700-4
- R. Ghorbel, M. Hbaib, and S. Zouari, Purely periodic beta-expansions over Laurent series, Internat. J. Algebra Comput. 22 (2012), no. 2, 1-12.
- M. Hbaib and M. Mkaouar, Sur le beta-developpement de 1 dans le corps des series formelles, Int. J. Number Theory 2 (2006), no. 3, 365-378. https://doi.org/10.1142/S1793042106000619
-
S. Ito and H. Rao, Purely periodic
${\beta}$ -expansions with Pisot unit base, Proc. Amer. Math. Soc. 133 (2005), no. 4, 953-964. https://doi.org/10.1090/S0002-9939-04-07794-9 - B. Li and J. Wu, Beta-expansions and continued fraction expansion over formal Laurent series, Finite Fields Appl. 14 (2008), no. 3, 635-647. https://doi.org/10.1016/j.ffa.2007.09.005
-
B. Li, J. Wu, and J. Xu, Metric properties and exceptional sets of
${\beta}$ -expansions over formal Laurent series, Monatsh. Math. 155 (2008), no. 2, 145-160. https://doi.org/10.1007/s00605-008-0531-7 - A. Renyi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar 8 (1957), 477-493. https://doi.org/10.1007/BF02020331
- K. Scheicher, Beta-expansions in algebraic function fields over finite fields, Finite Fields Appl. 13 (2007), no. 2, 394-410. https://doi.org/10.1016/j.ffa.2005.08.008
- K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), no. 4, 269-278. https://doi.org/10.1112/blms/12.4.269