참고문헌
- Berndt, K., Campanile, C., Muff, R., Strehler, E., Born, W., and Fuchs, B. (2013). Evaluation of quercetin as a potential drug in osteosarcoma treatment. Anticancer Res. 33, 1297-1306.
- Bielack, S.S., Carrle, D., Hardes, J., Schuck, A., and Paulussen, M. (2008). Bone tumors in adolescents and young adults. Curr. Treat Options Oncol. 9, 67-80. https://doi.org/10.1007/s11864-008-0057-1
- Chou, A.J., Gupta, R., Bell, M.D., Riewe, K.O., Meyers, P.A., and Gorlick, R. (2013). Inhaled lipid cisplatin (ILC) in the treatment of patients with relapsed/progressive osteosarcoma metastatic to the lung. Pediatr. Blood Cancer 60, 580-586. https://doi.org/10.1002/pbc.24438
- Galluzzi, L., Senovilla, L., Vitale, I., Michels, J., Martins, I., Kepp, O., Castedo, M., and Kroemer, G. (2012). Molecular mechanisms of cisplatin resistance. Oncogene 31, 1869-1883. https://doi.org/10.1038/onc.2011.384
- Guo, J.H., Feng, Z.J., Huang, Z., Wang, H.Y., and Lu, W.J. (2014). MicroRNA-217 functions as a tumour suppressor gene and correlates with cell resistance to cisplatin in lung cancer. Mol. Cells 37, 664-671. https://doi.org/10.14348/molcells.2014.0121
- Kato, M., Putta, S., Wang, M., Yuan, H., Lanting, L., Nair, I., Gunn, A., Nakagawa, Y., Shimano, H., Todorov, I., et al. (2009). TGFbeta activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat. Cell Biol. 11, 881-U263. https://doi.org/10.1038/ncb1897
- Kim, J.Y., Kim, E.H., Park, S.S., Lim, J.H., Kwon, T.K., and Choi, K.S. (2008). Quercetin sensitizes human hepatoma cells to TRAIL-induced apoptosis via Sp1-mediated DR5 upregulation and proteasome-mediated c-FLIPS down-regulation. J. Cell Biochem. 105, 1386-1398. https://doi.org/10.1002/jcb.21958
- Li, N., Sun, C., Zhou, B., Xing, H., Ma, D., Chen, G., and Weng, D. (2014). Low concentration of quercetin antagonizes the cytotoxic effects of anti-neoplastic drugs in ovarian cancer. PLoS One 9, e100314. https://doi.org/10.1371/journal.pone.0100314
- Liang, W., Li, X., Li, C., Liao, L., Gao, B., Gan, H., Yang, Z., and Chen, X. (2011). Quercetin-mediated apoptosis via activation of the mitochondrial-dependent pathway in MG-63 osteosarcoma cells. Mol. Med. Rep. 4, 1017-1023.
- Martinez-Velez, N., Xipell, E., Jauregui, P., Zalacain, M., Marrodan, L., Zandueta, C., Vera, B., Urquiza, L., Sierrasesumaga, L., Julian, M.S., et al. (2014). The oncolytic adenovirus Delta24-RGD in combination with cisplatin exerts a potent antiosteosarcoma activity. J. Bone Miner Res. 29, 2287-2296. https://doi.org/10.1002/jbmr.2253
- Orsolic, N., and Car, N. (2014). Quercetin and hyperthermia modulate cisplatin-induced DNA damage in tumor and normal tissues in vivo. Tumour. Biol. 35, 6445-6454. https://doi.org/10.1007/s13277-014-1843-y
- Scambia, G., Ranelletti, F.O., Benedetti Panici, P., Bonanno, G., De Vincenzo, R., Piantelli, M., and Mancuso, S. (1990). Synergistic antiproliferative activity of quercetin and cisplatin on ovarian cancer cell growth. Anticancer Drugs 1, 45-48. https://doi.org/10.1097/00001813-199010000-00008
- Shen, D.W., Pouliot, L.M., Hall, M.D., and Gottesman, M.M. (2012). Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol. Rev. 64, 706-721. https://doi.org/10.1124/pr.111.005637
- SS, B. (2012). A review of quercetin: Antioxidant and anticancer properties. World J. Pharm. Pharm. Sci. 1, 146-160.
- Suh, D.K., Lee, E.J., Kim, H.C., and Kim, J.H. (2010). Induction of G(1)/S phase arrest and apoptosis by quercetin in human osteosarcoma cells. Arch. Pharm. Res. 33, 781-785. https://doi.org/10.1007/s12272-010-0519-4
- Wang, P., Vadgama, J.V., Said, J.W., Magyar, C.E., Doan, N., Heber, D., and Henning, S.M. (2014). Enhanced inhibition of prostate cancer xenograft tumor growth by combining quercetin and green tea. J. Nutr. Biochem. 25, 73-80. https://doi.org/10.1016/j.jnutbio.2013.09.005
- Wu, J., Liao, Q., He, H., Zhong, D., and Yin, K. (2014). TWIST interacts with beta-catenin signaling on osteosarcoma cell survival against cisplatin. Mol. Carcinog. 53, 440-446. https://doi.org/10.1002/mc.21991
- Xie, X.B., Yin, J.Q., Jia, Q., Wang, J., Zou, C.Y., Brewer, K.J., Colombo, C., Wang, Y.F., Huang, G., and Shen, J.N. (2011). Quercetin induces apoptosis in the methotrexate-resistant osteosarcoma cell line U2-OS/MTX300 via mitochondrial dysfunction and dephosphorylation of Akt. Oncol. Rep. 26, 687-693.
- Yi, L., Zongyuan, Y., Cheng, G., Lingyun, Z., Guilian, Y., and Wei, G. (2014). Quercetin enhances apoptotic effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in ovarian cancer cells through reactive oxygen species (ROS) mediated CCAAT enhancer-binding protein homologous protein (CHOP)-death receptor 5 pathway. Cancer Sci. 105, 520-527. https://doi.org/10.1111/cas.12395
- Zhao, W.G., Yu, S.N., Lu, Z.H., Ma, Y.H., Gu, Y.M., and Chen, J. (2010). The miR-217 microRNA functions as a potential tumor suppressor in pancreatic ductal adenocarcinoma by targeting KRAS. Carcinogenesis 31, 1726-1733. https://doi.org/10.1093/carcin/bgq160
- Zhao, G.Y., Cai, C.K., Yang, T.T., Qiu, X.C., Liao, B., Li, W., Ji, Z.W., Zhao, J., Zhao, H.E., Guo, M.J., et al. (2013). MicroRNA-221 induces cell survival and cisplatin resistance through PI3K/Akt pathway in human osteosarcoma. PLoS One 8, e53906. https://doi.org/10.1371/journal.pone.0053906
피인용 문헌
- Quercetin suppresses the metastatic ability of lung cancer through inhibiting Snail-dependent Akt activation and Snail-independent ADAM9 expression pathways vol.1864, pp.10, 2017, https://doi.org/10.1016/j.bbamcr.2017.06.017
- Potential therapeutic implications of miRNAs in osteosarcoma chemotherapy vol.39, pp.9, 2017, https://doi.org/10.1177/1010428317705762
- An Fc-Small Molecule Conjugate for Targeted Inhibition of the Adenosine 2A Receptor vol.17, pp.20, 2016, https://doi.org/10.1002/cbic.201600337
- Activation and conformational dynamics of a class B G-protein-coupled glucagon receptor vol.18, pp.18, 2016, https://doi.org/10.1039/C6CP00798H
- Molecular mechanisms of action of quercetin in cancer: recent advances vol.37, pp.10, 2016, https://doi.org/10.1007/s13277-016-5184-x
- MicroRNAs and Potential Targets in Osteosarcoma: Review vol.3, 2015, https://doi.org/10.3389/fped.2015.00069
- Structural complexes of the agonist, inverse agonist and antagonist bound C5a receptor: insights into pharmacology and signaling vol.12, pp.5, 2016, https://doi.org/10.1039/C6MB00031B
- Phase-plate cryo-EM structure of a class B GPCR–G-protein complex vol.546, pp.7656, 2017, https://doi.org/10.1038/nature22327
- Flavonoid allosteric modulation of mutated visual rhodopsin associated with retinitis pigmentosa vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-11391-x
- Formyl peptide receptor polymorphisms: 27 most possible ways for phagocyte dysfunction vol.82, pp.4, 2017, https://doi.org/10.1134/S0006297917040034
- Dietary phytochemicals as epigenetic modifiers in cancer: Promise and challenges vol.40-41, 2016, https://doi.org/10.1016/j.semcancer.2016.04.002
- Regulation of microRNA using promising dietary phytochemicals: Possible preventive and treatment option of malignant mesothelioma vol.94, 2017, https://doi.org/10.1016/j.biopha.2017.07.075
- Structure and dynamics of GPCR signaling complexes vol.25, pp.1, 2018, https://doi.org/10.1038/s41594-017-0011-7
- GPCR-specific autoantibody signatures are associated with physiological and pathological immune homeostasis vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-07598-9
- Quercetin-mediated regulation of signal transduction cascades and microRNAs: Natural weapon against cancer vol.119, pp.12, 2018, https://doi.org/10.1002/jcb.27488
- PAC1 Receptors: Shapeshifters in Motion pp.1559-1166, 2018, https://doi.org/10.1007/s12031-018-1132-0
- Anticancer potential of quercetin: A comprehensive review pp.0951418X, 2018, https://doi.org/10.1002/ptr.6155
- Myricetin treatment induces apoptosis in canine osteosarcoma cells by inducing DNA fragmentation, disrupting redox homeostasis, and mediating loss of mitochondrial membrane potential vol.233, pp.9, 2018, https://doi.org/10.1002/jcp.26598
- Disturbance in biosynthesis of arachidonic acid impairs the sexual development of the onion blight pathogen Stemphylium eturmiunum pp.1432-0983, 2019, https://doi.org/10.1007/s00294-019-00930-w
- Drug resistance‐related microRNAs in osteosarcoma: Translating basic evidence into therapeutic strategies pp.1582-4934, 2019, https://doi.org/10.1111/jcmm.14064
- Anticancer Natural Compounds as Epigenetic Modulators of Gene Expression vol.18, pp.2, 2015, https://doi.org/10.2174/1389202917666160803165229
- Noncoding RNA in drug resistant sarcoma vol.8, pp.40, 2015, https://doi.org/10.18632/oncotarget.19029
- Identification of a Different Agonist-Binding Site and Activation Mechanism of the Human P2Y 1 Receptor vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-14268-1
- Inhibition of glioblastoma cell proliferation, invasion, and mechanism of action of a novel hydroxamic acid hybrid molecule vol.4, pp.None, 2018, https://doi.org/10.1038/s41420-018-0103-0
- GPCR structure and function relationship: identification of a biased apelin receptor mutant vol.475, pp.23, 2015, https://doi.org/10.1042/bcj20180740
- Endogenous and Exogenous Modulation of Nrf2 Mediated Oxidative Stress Response in Bovine Granulosa Cells: Potential Implication for Ovarian Function vol.20, pp.7, 2015, https://doi.org/10.3390/ijms20071635
- Controlling metastatic cancer: the role of phytochemicals in cell signaling vol.145, pp.5, 2015, https://doi.org/10.1007/s00432-019-02892-5
- Fisetin and Quercetin: Promising Flavonoids with Chemopreventive Potential vol.9, pp.5, 2015, https://doi.org/10.3390/biom9050174
- Quercetin ameliorates lipopolysaccharide-caused inflammatory damage via down-regulation of miR-221 in WI-38 cells vol.108, pp.None, 2019, https://doi.org/10.1016/j.yexmp.2019.03.002
- The effect of quercetin on microRNA expression: A critical review vol.163, pp.2, 2015, https://doi.org/10.5507/bp.2019.030
- miR-548d-3p inhibits osteosarcoma by downregulating KRAS vol.11, pp.14, 2015, https://doi.org/10.18632/aging.102097
- Effect of quercetin on the anti-tumor activity of cisplatin in EMT6 breast tumor-bearing mice vol.62, pp.4, 2015, https://doi.org/10.5468/ogs.2019.62.4.242
- Effects of quercetin on microRNAs: A mechanistic review vol.120, pp.8, 2015, https://doi.org/10.1002/jcb.28663
- Quercetin Enhances the Anti-Tumor Effects of BET Inhibitors by Suppressing hnRNPA1 vol.20, pp.17, 2015, https://doi.org/10.3390/ijms20174293
- Quercetin analogs with high fetal hemoglobin-inducing activity vol.28, pp.10, 2015, https://doi.org/10.1007/s00044-019-02412-7
- miR-193b exhibits mutual interaction with MYC, and suppresses growth and metastasis of osteosarcoma vol.44, pp.1, 2015, https://doi.org/10.3892/or.2020.7601
- The role of microRNA in cisplatin resistance or sensitivity vol.24, pp.9, 2020, https://doi.org/10.1080/14728222.2020.1785431
- G-Protein coupled receptors: structure and function in drug discovery vol.10, pp.60, 2015, https://doi.org/10.1039/d0ra08003a
- Natural Products Attenuating Biosynthesis, Processing, and Activity of Ras Oncoproteins: State of the Art and Future Perspectives vol.10, pp.11, 2015, https://doi.org/10.3390/biom10111535
- Synergy, Additivity, and Antagonism between Cisplatin and Selected Coumarins in Human Melanoma Cells vol.22, pp.2, 2015, https://doi.org/10.3390/ijms22020537
- Research Progress of MicroRNA in Chemotherapy Resistance of Osteosarcoma vol.20, pp.None, 2015, https://doi.org/10.1177/15330338211034262
- Potential Therapeutic Targets of Quercetin, a Plant Flavonol, and Its Role in the Therapy of Various Types of Cancer through the Modulation of Various Cell Signaling Pathways vol.26, pp.5, 2015, https://doi.org/10.3390/molecules26051315
- Targeting epigenetics in cancer: therapeutic potential of flavonoids vol.61, pp.10, 2015, https://doi.org/10.1080/10408398.2020.1763910
- Possible connection between diet and microRNA in cancer scenario vol.73, pp.None, 2015, https://doi.org/10.1016/j.semcancer.2020.11.014
- Potential of natural products in osteosarcoma treatment: Focus on molecular mechanisms vol.144, pp.None, 2015, https://doi.org/10.1016/j.biopha.2021.112257
- Recurrent high-impact mutations at cognate structural positions in class A G protein-coupled receptors expressed in tumors vol.118, pp.51, 2015, https://doi.org/10.1073/pnas.2113373118