References
- Bambill, D.V., Felix, D.H. and Rossi, R.E. (2010), "Vibration analysis of rotating Timoshenko beams by means of the differential quadrature method", Struct. Eng. Mech., 34(2), 231-245. https://doi.org/10.12989/sem.2010.34.2.231
- Banerjee, J.R. and Jackson, D.R. (2013), "Free vibration of a rotating tapered Rayleigh beam: a dynamic stiffness method of solution", J. Comput. Struct., 124, 11-20. https://doi.org/10.1016/j.compstruc.2012.11.010
- Chalah, F., Djellab, S.E., Chalah-Rezgui, L., Falek, K. and Bali, A. (2013), "Tapered beam axial vibration frequency: linear cross-area variation case", 2nd International Conference on Civil Engineering - ICCEN 2013, Stockholm, Sweden, December.
- Clough, R.W. and Penzien, J. (1975), Dynamics of Structures, McGraw-Hill Book Company, New York.
- Hijmissen, J.W. and Horssen, W.T.V. (2008), "On transverse vibrations of a vertical Timoshenko beam", J. Sound Vib., 314(1-2), 161-179. https://doi.org/10.1016/j.jsv.2007.12.039
- Huang, Y., Yang, L.E. and Luo, Q.Z. (2013), "Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section", Compos. Part B, 45(1), 1493-1498. https://doi.org/10.1016/j.compositesb.2012.09.015
- Huang, Y. and Li, X.F. (2010), "A new approach for free vibration of axially functionally graded beams with non-uniform cross-section", J. Sound Vib., 329, 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029
- Kelly, S.G. (2007), Advanced Vibration Analysis, CRC Press, Taylor & Francis Group, Boca Raton, FL, USA.
- Li, X.F., Tang, A.Y. and Xi, L.Y. (2013), "Vibration of a Rayleigh cantilever beam with axial force and tip mass", J. Construct. Steel Res., 80, 15-22. https://doi.org/10.1016/j.jcsr.2012.09.015
- Li, Q.S. (2003), "Torsional vibration of multi-step non-uniform rods with various concentrated elements", J. Sound Vib., 260(4), 637-651. https://doi.org/10.1016/S0022-460X(02)01010-6
- Maiz, S., Bambill, D.V., Rossit, C.A. and Laura, P.A.A. (2007), "Transverse vibration of Bernoulli-Euler beams carrying point masses and taking into account their rotatory inertia: exact solution", J Sound Vib, 303(3-5), 895-908. https://doi.org/10.1016/j.jsv.2006.12.028
- Pouyet, J.M. and Lataillade, J.L. (1981), "Torsional vibration of a shaft with non-uniform cross-section", J. Sound Vib., 76(1), 13-22. https://doi.org/10.1016/0022-460X(81)90287-X
- Pradhan, K.K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B, 51, 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027
- Rayleigh, L. (1877), Theory of Sound, Macmillan, Second Edition, New York.
- Saffari, H., Mohammadnejad, M. and Bagheripour, M.H. (2012), "Free vibration analysis of non-prismatic beams under variable axial forces", Struct. Eng. Mech., 43(5), 561-582. https://doi.org/10.12989/sem.2012.43.5.561
- Sapountzakis, E.J. and Dourakopoulos, J.A. (2010), "Shear deformation effect in flexural-torsional buckling analysis of beams of arbitrary cross section by BEM", Struct. Eng. Mech., 35(2), 141-173. https://doi.org/10.12989/sem.2010.35.2.141
- Saapountzakis, E.J. (2000), "Solutions of non-uniform torsion of bars by an integral equation method", J. Comput. Struct., 77(6), 659-667. https://doi.org/10.1016/S0045-7949(00)00020-1
- Stojanovic, V. and Kozic, P. (2012), "Forced transverse vibration of Rayleigh and Timoshenko double-beam system with effect of compressive axial load", Int. J. Mech. Sci., 60(1), 59-71. https://doi.org/10.1016/j.ijmecsci.2012.04.009
- Timoshenko, S.P. (1922), "On the transverse vibrations of bars of uniform cross-section", Phil. Mag., Series 6, 43(253), 125-131. https://doi.org/10.1080/14786442208633855
- Timoshenko, S.P. (1921), "On the correction for shear of the differential equation for transverse vibration of prismatic bars", Phil. Mag., Series 6, 41(245), 744-746. https://doi.org/10.1080/14786442108636264
- Wright, A.D., Smith, C.E., Thresher, R.W. and Wang, J.L.C. (1982), "Vibration modes of centrifugally stiffened beams", ASME J. Appl. Mech., 49(2), 197-202. https://doi.org/10.1115/1.3161966
- Yan, S.X., Zhang, Z.P., Wei, D.J. and Li, X.F. (2011), "Bending vibration of rotating tapered cantilevers by the integral equation method", AIAA J., 49(4), 872-876. https://doi.org/10.2514/1.J050572
- Yesilce, Y. (2015), "Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias", Struct. Eng. Mech., 53(3), 537-573. https://doi.org/10.12989/sem.2015.53.3.537
- Yesilce, Y. and Demirdag, O. (2008), "Effect of axial force on free vibration of Timoshenko multi-span beam carrying multiple spring-mass systems", Int. J. Mech. Sci., 50(6), 995-1003. https://doi.org/10.1016/j.ijmecsci.2008.03.001
Cited by
- Quadratic B-spline finite element method for a rotating non-uniform Rayleigh beam vol.61, pp.6, 2015, https://doi.org/10.12989/sem.2017.61.6.765
- Flapwise and non-local bending vibration of the rotating beams vol.72, pp.2, 2019, https://doi.org/10.12989/sem.2019.72.2.229
- Static analysis of tall buildings based on Timoshenko beam theory vol.11, pp.4, 2019, https://doi.org/10.1007/s40091-019-00245-7
- Free vibrations of non-uniform beams on a non-uniform Winkler foundation using the Laguerre collocation method vol.42, pp.5, 2020, https://doi.org/10.1007/s40430-020-02332-3
- Unified calculation model for the longitudinal fundamental frequency of continuous rigid frame bridge vol.77, pp.3, 2021, https://doi.org/10.12989/sem.2021.77.3.343