DOI QR코드

DOI QR Code

Buckling analysis of semi-rigid gabled frames

  • Rezaiee-Pajand, Mohammad (Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad) ;
  • Shahabian, Farzad (Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad) ;
  • Bambaeechee, Mohsen (Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad)
  • Received : 2014.04.13
  • Accepted : 2015.07.07
  • Published : 2015.08.10

Abstract

It is intended to perform buckling analysis of steel gabled frames with tapered members and flexible connections. The method is based on the exact solutions of the governing differential equations for stability of a gabled frame with I-section elements. Corresponding buckling load and subsequently effective length factor are obtained for practical use. For several popular frames, the influences of the shape factor, taper ratio, span ratio, flexibility of connections and elastic rotational and translational restraints on the critical load, and corresponding equivalent effective length coefficient are studied. Some of the outcomes are compared against available solutions, demonstrating the accuracy, efficiency and capabilities of the presented approach.

Keywords

References

  1. AISC (1999), Load and Resistance Factor Design Specification, for Structural Steel Building, American Institute of Steel Construction, December, USA.
  2. Al-Sadder, S.Z. (2004), "Exact expressions for stability functions of a general non-prismatic beam-column member", J. Constr. Steel Res., 60(11), 1561-1584. https://doi.org/10.1016/j.jcsr.2004.03.004
  3. Bazant, Z.P. (2000), "Structural stability", Int. J. Solid. Struct., 37(1-2), 55-67. https://doi.org/10.1016/S0020-7683(99)00078-5
  4. Chan, S., Huang, H. and Fang, L. (2005), "Advanced analysis of imperfect portal frames with semirigid base connections", J. Eng. Mech., 131(6), 633-640. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:6(633)
  5. Cristutiu, I. and Nunes, D. (2013a), "Behaviour of pitched-roof portal frames with tapered web and flange members considering lateral restraints", Proceedings of the Fifth International Conference on Structural Engineering, Mechanics and Computation SEMC2013, Cape Town, South Africa, September.
  6. Cristutiu, I.M. and Nunes, D.L. (2013b), "Advanced FEM analysis of steel pitched-roof portal frames with tapered members", Adv. Mater. Res., 710(June), 358-361. https://doi.org/10.4028/www.scientific.net/AMR.710.358
  7. Essa, H.S. (1998), "New stability equation for columns in unbraced frames", Struct. Eng. Mech., 6(4), 411-425. https://doi.org/10.12989/sem.1998.6.4.411
  8. Fraser, D.J. (1980), "Effective lengths in gable frames, sways not prevented", Civil Eng. Tran., 19(2), 176-183.
  9. Fraser, D.J. (1983), "Design of tapered member portal frames", J. Constr. Steel Res., 3(3), 20-26. https://doi.org/10.1016/0143-974X(83)90003-2
  10. Hayalioglu, M.S. and Saka, M.P. (1992), "Optimum design of geometrically nonlinear elastic-plastic steel frames with tapered members", Comput. Struct., 44(4), 915-924. https://doi.org/10.1016/0045-7949(92)90479-J
  11. Hwang, J., Chang, K., Lee, G. and Ketter, R. (1989), "Shaking table tests of pinned-base steel gable frame", J. Struct. Eng., 115(12), 3031-3043. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:12(3031)
  12. Hwang, J.S., Chang, K.C. and Lee, G.C. (1991), "Seismic behavior of gable frame consisting of tapered members", J. Struct. Eng., 117(3), 808-821. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:3(808)
  13. Irani, F. (1988), "Stability of one bay symmetrical frames with nonuniform members", Int. J. Eng., 1(4), 193-200.
  14. Issa, H.K. and Mohammad, F.A. (2009), "Practical non-prismatic stiffness matrix for haunched-rafter of pitched-roof steel portal frames", Challenges, opportunities, and solutions in structural engineering and construction, ISEC-5.
  15. Karabalis, D.L. and Beskos, D.E. (1983), "Static, dynamic and stability analysis of structures composed of tapered beams", Comput. Struct., 16(6), 731-748. https://doi.org/10.1016/0045-7949(83)90064-0
  16. Lee, G.C. and Morrell, M.L. (1975), "Application of AISC design provisions for tapered members", Eng. J., 12, 1-13.
  17. Lee, G.C., Morrell, M.L. and Ketter, R.L. (1971), "Design of tapered members", No. 173, Welding Research Council Bulletin.
  18. Li, G.Q. and Li, J.J. (2000), "Effects of shear deformation on the effective length of tapered columns with I-section for steel portal frames", Struct. Eng. Mech., 10(5), 479-489. https://doi.org/10.12989/sem.2000.10.5.479
  19. Li, G.Q. and Li, J.J. (2002), "A tapered Timoshenko-Euler beam element for analysis of steel portal frames", J. Constr. Steel Res., 58(12), 1531-1544. https://doi.org/10.1016/S0143-974X(02)00003-2
  20. Li, J.J. and Li, G.Q. (2004), "Reliability-based integrated design of steel portal frames with tapered members", Struct. Saf., 26(2), 221-239. https://doi.org/10.1016/j.strusafe.2003.02.001
  21. Li, J.J., Li, G.Q. and Chan, S.L. (2003), "A second-order inelastic model for steel frames of tapered members with slender web", Eng. Struct., 25(8), 1033-1043. https://doi.org/10.1016/S0141-0296(03)00043-9
  22. Li, J., Wang, Y.Q., Chang, T. and Shi, F. (2011), "In-Plane buckling analysis of gabled arch frame steel building", Appl. Mech. Mater., 71-78, 3680-3686. https://doi.org/10.4028/www.scientific.net/AMM.71-78.3680
  23. Liao, X.J., Shi, Y.J. and Wang, Y.Q. (2005), "The analysis of steel gabled frames with flexible connections", Proceeding of the Fourth International Conference on Advances in Steel Structures, Shanghai, China, June.
  24. Lu, L. (1964), "Effective length of columns in gable frames", Eng. J., AISC, 2(1), 1-6.
  25. Manolis, G.D., Beskos, D.E. and Brand, B.J. (1986), "Elastoplastic analysis and design of gabled frames", Comput. Struct., 22(4), 693-697. https://doi.org/10.1016/0045-7949(86)90023-4
  26. Marques, L., da Silva, L.S. and Rebelo, C. (2014), "Rayleigh-Ritz procedure for determination of the critical load of tapered columns", Steel Compos. Struct., 16(1), 47-60.
  27. Miller, C.J. and Moll Jr., T.G. (1979), "Automatic design of tapered member gabled frames", Comput. Struct., 10(6), 847-854. https://doi.org/10.1016/0045-7949(79)90052-X
  28. Mohamed, S.E. and Simitses, G.J. (1989), "Buckling of flexibly-connected gabled frames", Int. J. Nonlin. Mech., 24(5), 353-364. https://doi.org/10.1016/0020-7462(89)90024-3
  29. Mohamed, S.E., Kounadis, A.N. and Simitses, G.J. (1991), "Elastic-plastic instability of flexibly connected non-orthogonal frames", Comput. Struct., 39(6), 663-669. https://doi.org/10.1016/0045-7949(91)90208-4
  30. Mohamed, S.E., Kounadis, A.N. and Simitses, G.J. (1992), "Elasto-plastic analysis of gabled frames with nonprismatic geometries", Comput. Struct., 44(3), 693-697. https://doi.org/10.1016/0045-7949(92)90403-M
  31. Papadopoulos, P.G., Papadopoulou, A.K. and Papaioannou, K.K. (2008), "Simple nonlinear static analysis of steel portal frame with pitched roof exposed to fire", Struct. Eng. Mech., 29(1), 37-53. https://doi.org/10.12989/sem.2008.29.1.037
  32. Rezaiee-Pajand, M. (1990), "Gable frame analysis using iteration procedure", Amirkabir, 4, 41-61.
  33. Ronagh, H.R. and Bradford, M.A. (1996), "A rational model for the distortional buckling of tapered members", Comput. Meth. Appl. Mech. Eng., 130(3-4), 263-277. https://doi.org/10.1016/0045-7825(95)00930-2
  34. Safavi, A.A. and Moharami, H. (2009), "Coefficient of effective length of tapered columns in one-bay gabled frames for state of free to sway with hinged bases", Sharif Civ. Eng., 25(48), 22-30. (in Persian)
  35. Saffari, H., Rahgozar, R. and Jahanshahi, R. (2008), "An efficient method for computation of effective length factor of columns in a steel gabled frame with tapered members", J. Constr. Steel Res., 64(4), 400-406. https://doi.org/10.1016/j.jcsr.2007.09.001
  36. Saka, M.P. (1997), "Optimum design of steel frames with tapered members", Comput. Struct., 63(4), 797-811. https://doi.org/10.1016/S0045-7949(96)00074-0
  37. Shooshtari, A. and Khajavi, R. (2010), "An efficient procedure to find shape functions and stiffness matrices of nonprismatic Euler-Bernoulli and Timoshenko beam elements", Eur. J. Mech. Solid., 29(5), 826-836. https://doi.org/10.1016/j.euromechsol.2010.04.003
  38. Silvestre, N. and Camotim, D. (2005), "Second-order analysis and design of pitched-roof steel frames", Proceeding of the Fourth International Conference on Advances in Steel Structures, c, June.
  39. Silvestre, N. and Camotim, D. (2007), "Elastic buckling and second-order behaviour of pitched-roof steel frames", J. Constr. Steel Res., 63(6), 804-818. https://doi.org/10.1016/j.jcsr.2006.08.003
  40. Silvestre, N., Camotim, D. and Correa, M. (1998), "On the design and safety checking of unbraced pitchedroof steel frames", J. Constr. Steel Res., 46(1-3), 328-330. https://doi.org/10.1016/S0143-974X(98)00036-4
  41. Silvestre, N., Mesquita, A., Camotim, D. and Silva, L. (2000), "In-plane buckling behavior of pitched-roof steel frames with semi-rigid connections", In Frames with Partially Restrained Connections, SSRC 1998 Theme Conference Workshop Volume, 21-34.
  42. Simitses, G.J. and Mohamed, S.E. (1989), "Nonlinear analysis of gabled frames under static loads", J. Constr. Steel Res., 12(1), 1-17. https://doi.org/10.1016/0143-974X(89)90046-1
  43. Simitses, G.J. and Mohamed, S.E. (1990), "Instability and collapse of flexibly-connected gabled frames", Int. J. Solid. Struct., 26(9-10), 1159-1171. https://doi.org/10.1016/0020-7683(90)90022-N
  44. Tajmir Riahi, H., Shojaei Barjoui, A., Bazazzadeh, S. and Etezady, S.M.A. (2012), "Buckling analysis of non-prismatic columns using slope-deflection method", Proceedings of the 15th World Conference on Earthquake Engineering 15WCEE, Lisbon, Portugal, September.
  45. Vlahinos, A.S. and Cervantes, A. (1990), "Buckling and postbuckling behaviour of gabled frames", Math. Comput. Model., 14, 873-876. https://doi.org/10.1016/0895-7177(90)90306-8
  46. Wang, J.F. and Li, G.Q. (2007), "Stability analysis of semi-rigid composite frames", Steel Compos. Struct., 7(2), 119-133. https://doi.org/10.12989/scs.2007.7.2.119
  47. Wang, Y., Liu, Y.J. and Xu, Y.F. (2011), "Stiffness analysis on semi-rigid joints in gabled frames", Adv. Mater. Res., 243-249(1), 120-123. https://doi.org/10.4028/www.scientific.net/AMR.243-249.120
  48. Wilson, J.F. and Strong, D.J. (1997), "Elastic buckling of end-loaded, tapered, cantilevered beams with initial curvature", Struct. Eng. Mech., 5(3), 257-268. https://doi.org/10.12989/sem.1997.5.3.257
  49. Xu, D., Zhang, Q. and Liu, S. (2010), "Research on the effective length factor of tapered gable portal frames with leaning columns", Struct. Eng., 3, 66-71. (in Chinese)
  50. Yuan, Z. (2004), "Advanced analysis of steel frame structures subjected to lateral torsional buckling effects", Ph.D. Dissertation, Queensland University of Technology, Australia.

Cited by

  1. Application of Differential Transform Method to Free Vibration of Gabled Frames with Rotational Springs vol.17, pp.01, 2017, https://doi.org/10.1142/S0219455417500122
  2. A second-order flexibility-based model for steel frames of tapered members vol.132, 2017, https://doi.org/10.1016/j.jcsr.2017.01.002
  3. Buckling analysis of tapered BDFGM nano-beam under variable axial compression resting on elastic medium vol.66, pp.6, 2015, https://doi.org/10.12989/sem.2018.66.6.737
  4. Natural vibrations and instability of plane frames: Exact analytical solutions using power series vol.252, pp.None, 2015, https://doi.org/10.1016/j.engstruct.2021.113663