References
- Adali, S. (2012), "Variational principles for nonlocal continuum model of orthotropic graphene sheets embedded in an elastic medium", Acta Mathematica Scientia, 32, 325-338. https://doi.org/10.1016/S0252-9602(12)60020-4
- Aghababaei, R. and Reddy, J.N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending andv ibration of plates", J. Sound Vib., 326, 277289.
- Aksencer, T. and Aydogdu, M. (2011), "Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory", Physica E, 43, 954-959. https://doi.org/10.1016/j.physe.2010.11.024
- Anjomshoa, A. (2013), "Application of ritz functions in buckling analysis of embedded orthotropic circular and elliptical micro/nano-plates based on nonlocal elasticity theory", Meccanica, 48, 1337-1353. https://doi.org/10.1007/s11012-012-9670-y
- Ansari, R., Ashrafi, M.A., Pourashraf, T. and Sahmani, S. (2015), "Vibration and buckling characteristics of functionally graded nanoplates subjected to thermal loading based on surface elasticity theory", Acta Astronautica, 109, 42-51. https://doi.org/10.1016/j.actaastro.2014.12.015
- Behera, L. and Chakraverty, S. (2013), "Free vibration of nonhomogeneous Timoshenko nanobeams", Meccanica, 49(1), 51-67. https://doi.org/10.1007/s11012-013-9771-2
- Belkorissat I., Houari M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R.(2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable mode", Steel Compos. Struct., 18, 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
- Beni, A.A. and Malekzadeh, P. (2012), "Nonlocal free vibration of orthotropic nonprismatic skew nanoplates", Compos. Struct., 94, 3215-3222. https://doi.org/10.1016/j.compstruct.2012.04.013
- Bhat, R.B. (1985), "Plate deflections using orthogonal polynomials", J. Eng. Mech., 111, 1301-1309. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:11(1301)
- Bhat, R.B. (1991), "Vibration of rectangular plates on point and line supports using characteristic orthogonal polynomials in the Rayleigh-Ritz method", J. Sound Vib., 149, 170-172. https://doi.org/10.1016/0022-460X(91)90923-8
- Chakraverty, S. and Behera, L. (2014), "Free vibration of rectangular nanoplates using Rayleigh-Ritz method", Physica E, 56, 357-363. https://doi.org/10.1016/j.physe.2013.08.014
- Chakraverty, S., Jindal, R. and Agarwal, V.K. (2007), "Effect of non-homogeneity on natural frequencies of vibration of elliptic plates", Meccanica, 42, 585-599. https://doi.org/10.1007/s11012-007-9077-3
- Dubey, A., Sharma, G., Mavroidis, C., Tomassone, M.S., Nikitczuk, K. and Yarmush, M.L. (2004), "Computational Studies of Viral Protein Nano-Actuators", J. Comput. Theor. Nanosci., 1, 18-28. https://doi.org/10.1166/jctn.2003.003
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710.15. https://doi.org/10.1063/1.332803
- Farajpour, A., Danesh, M. and Mohammadi, M. (2011), "Buckling analysis of variable thickness nanoplates using nonlocal continuum mechanics", Physica E, 44, 719-727. https://doi.org/10.1016/j.physe.2011.11.022
- Jomehzadeh, E. and Saidi, A.R. (2012), "Study of small scale effect on nonlinear vibration of nano-plates", J. Comput. Theor. Nanosci., 9, 864-871. https://doi.org/10.1166/jctn.2012.2108
- Kiani, K. (2011), "Small-scaleeffect on the vibration of thin nanoplates subjected to amoving nanoparticle via nonlocal continuum theory", J. Sound Vib., 330, 4896-4914. https://doi.org/10.1016/j.jsv.2011.03.033
- Kiani, K. (2011a), "Nonlocal continuum-based modeling of a nanoplate subjected to a moving nanoparticle, Part I: theoretical formulations", Physica E: Low-dimen. Syst. Nanostruct., 44, 229248.
- Kiani, K. (2011b), "Nonlocal continuum-based modeling of a nanoplate subjected to a moving nanoparticle, Part II: parametric studies", Physica E: Low-dimen. Syst. Nanostruct., 44, 249269.
- Kiani, K. (2014), "Free vibration of conducting nanoplates exposed to unidirectional in-plane magnetic fields using nonlocal shear deformable plate theories", Physica E: Low-dimen. Syst. Nanostruct., 57C, 179-192.
- Liang, Y.J. and Han, Q. (2012), "Prediction of nonlocal scale parameter for carbon nanotubes", Sci. China Phys. Mech. Astron., 55, 1670-1678. https://doi.org/10.1007/s11433-012-4826-2
- Liang, Y.J. and Han, Q. (2014), "Prediction of the nonlocal scaling parameter for graphene sheet," Eur. J. Mech. A Solid., 45, 153-160. https://doi.org/10.1016/j.euromechsol.2013.12.009
- Liu, C., Ke, L.,Wang, Y.S., Yang, J. and Kitipornchai, S. (2013), "Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory", Compos. Struct., 106, 167-174, https://doi.org/10.1016/j.compstruct.2013.05.031
- Malekzadeh, P., Setoodeh, A. and Alibeygi Beni, A. (2011), "Small scale effect on the free vibration of orthotropic arbitrary straight-sided quadrilateral nanoplates", Compos. Struct., 93, 1631-1639. https://doi.org/10.1016/j.compstruct.2011.01.008
- Malekzadeh, P. and Shojaee, M. (2013), "Free vibration of nanoplates based on a nonlocal two-variable refined plate theory", Compos. Struct., 95, 443-452. https://doi.org/10.1016/j.compstruct.2012.07.006
- Murmu, T. and Pradhan, S.C. (2009), "Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory", Physica E, 41, 1451.
- Murmu, T. and Pradhan, S.C. (2009), "Vibration analysis of nanoplates under uniaxial prestressed conditions via nonlocal elasticity", J. Appl. Phys., 106, 104301. https://doi.org/10.1063/1.3233914
- Nami, M. R. and Janghorban, M. (2014), "Resonance behavior of FG rectangular micro/nano plate based on nonlocal elasticity theory and strain gradient theory with one gradient constant", Compos. Struct., 111, 349-353. https://doi.org/10.1016/j.compstruct.2014.01.012
- Narendar, S. (2011), "Buckling analysis of micro-/nano-scale plates based on two-variable refined plate theory incorporating nonlocal scale effects", Compos. Struct., 93. 3093-3103. https://doi.org/10.1016/j.compstruct.2011.06.028
- Narendar, S., Roy Mahapatra, D. and Gopalakrishnan, S. (2011), "Prediction of nonlocal scaling parameter for armchair and zigzag single-walled carbon nanotubes based on molecular structural mechanics, nonlocal elasticity and wave propagation", Int. J. Eng. Sci., 49, 509-522. https://doi.org/10.1016/j.ijengsci.2011.01.002
- Natarajan S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031
- Peng, H.B., Chang, C.W., Aloni, S., Yuzvinsky, T.D. and Zettl, A. (2006), "Ultrahigh frequency nanotube resonators", Phys. Rev. Lett., 97, 087203.
- Phadikar, J.K. and Pradhan, S.C. (2010), "Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates", Comput. Mater. Sci., 49, 492-499. https://doi.org/10.1016/j.commatsci.2010.05.040
- Pradhan, S. and Phadikar J. (2009), "Nonlocal elasticity theory for vibration of nanoplates", J. Sound Vib., 325, 206-223. https://doi.org/10.1016/j.jsv.2009.03.007
- Pradhan, S.C. and Murmu, T. (2010), "Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever", Physica E, 42, 1944-1949. https://doi.org/10.1016/j.physe.2010.03.004
- Rajalingham, C., Bhat, R.B. and Xistris, G.D. (1996), "Vibration of rectangular plates using plate characteristic functions as shape functions in the Rayleigh-Ritz method", J. Sound Vib., 193, 585-599.
- Ravari, M.K. and Shahidi, A. (2013), "Axisymmetric buckling of the circular annular nanoplates using finite difference method", Meccanica, 48, 135-144. https://doi.org/10.1007/s11012-012-9589-3
- Ruud, J., Jervis, T. and Spaepen, F. (1994), "Nanoindentation of ag/ni multilayered thin films", J. Appl. Phys., 75, 4969-4974. https://doi.org/10.1063/1.355787
- Salehipour, H., Nahvi, H. and Shahidi, A.R. (2015), "Exact analytical solution for free vibration of functionally graded micro/nanoplates via three-dimensional nonlocal elasticity", Physica E: Low-dimen. Syst. Nanostruct., 66, 350-358. https://doi.org/10.1016/j.physe.2014.10.001
- Singh, B. ans Chakraverty, S. (1994a), "Boundary characteristic orthogonal polynomials in numerical approximation", Commun. Numer. Meth. Eng., 10, 1027-1043. https://doi.org/10.1002/cnm.1640101209
- Wang, K. and Wang, B. (2011), "Vibration of nanoscale plates with surface energy via nonlocal elasticity", Physica E: Low-dimen. Syst. Nanostruct., 44, 448-453. https://doi.org/10.1016/j.physe.2011.09.019
Cited by
- Dynamic buckling of FGM viscoelastic nano-plates resting on orthotropic elastic medium based on sinusoidal shear deformation theory vol.60, pp.3, 2016, https://doi.org/10.12989/sem.2016.60.3.489
- Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
- The computation of bending eigenfrequencies of single-walled carbon nanotubes based on the nonlocal theory vol.9, pp.2, 2018, https://doi.org/10.5194/ms-9-349-2018
- Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory vol.22, pp.6, 2015, https://doi.org/10.12989/scs.2016.22.6.1301
- Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory vol.64, pp.6, 2015, https://doi.org/10.12989/sem.2017.64.6.683
- Influence of shear preload on wave propagation in small-scale plates with nanofibers vol.70, pp.4, 2015, https://doi.org/10.12989/sem.2019.70.4.407