DOI QR코드

DOI QR Code

Application of Image Technique and Optical Fiber Sensor for Air-water Mixture Flow

기포흐름 측정을 위한 영상기법 및 광섬유센서 적용

  • Ryu, Yonguk (Hydro Science and Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Jung, Tae-Hwa (Department of Civil and Environmental Engineering, Hanbat National University)
  • 류용욱 (한국건설기술연구원 수자원하천연구소) ;
  • 정태화 (한밭대학교 건설환경공학과)
  • Received : 2015.02.13
  • Accepted : 2015.05.14
  • Published : 2015.07.31

Abstract

Measurements of multiphase flows containing bubbles have been limited because most existing methods target one phase flows. Especially, multiphase flows with a high void ratio have been rarely successful in measurements due to the sudden change of density and thick interfaces between air and water. This study introduces two methods that are capable of measuring flow fields regardless of bubble void ratio, named bubble image velocimetry and bundle fiber optic flow meter. The calculation of the depth of field is suggested to reduce and estimate errors by perspective image velocimetry. The bundle fiber optic flow meter is designed to increase a measurement rate using many optical fibers with a thin diameter. The two methods measured bubble plumes to test reliability and the velocity measurements show good agreement. In addition a hydraulic jump, one of the multiple flows in rivers was measured to test applicability of the methods.

기포가 포함된 다상흐름의 측정은 중요함에도 불구하고 많은 제약이 있었다. 특히, 공극률이 높은 다상 흐름은 밀도차의 급격한 변화와 두꺼운 공기-물 경계면으로 인해 측정이 매우 어렵다. 본 연구에서는 공극률에 상관없이 기포흐름을 측정할 수 있는 기포영상유속측정법과 다발 광섬유유동측정계를 소개하고자 한다. 기포영상측정기법의 경우, 화상측정시 발생하는 원근에 의한 오차를 최소화하고 추정할 수 있는 피사계 심도에 대한 계산방법을 제시하여 정도 분석을 위한 방안을 제시하였다. 다발 광섬유유동측정계는 얇은 광섬유의 특성을 이용해 다발로 제작하여 측정률을 증가시키고자 하였다. 제시된 두 기법을 기포플룸에 적용하여 신뢰도를 검토하였으며 잘 일치하는 것을 확인하였다. 소개된 기법으로 대표적인 하천 다상흐름인 도수흐름을 측정하여 그 적용성을 검토하였다.

Keywords

References

  1. Chang, K.A., Lim, H.J., and Su, C.B. (2002). "A fibre optic fresnel ratio meter for measurements of solute concentration and refractive index change in fluids." Measurement Science and Technology, Vol. 13, pp. 1962-1965. https://doi.org/10.1088/0957-0233/13/12/321
  2. Chang, K.A., Lim, H.J., and Su, C.B. (2003). "Fiber optic reflectometer for velocity and fraction ratio measurements in multiphase flows." Review of Scientific Instruments, Vol. 74, No. 7, pp. 3559-3565. https://doi.org/10.1063/1.1578152
  3. Chanson, H. (1997). Air Bubble Entrainment in Freesurface Turbulent Shear Flows, Academic Press, London.
  4. Govender, G.P., Mocke, G.P., and Alport, M.J. (2002). "Videoimaged surf zone wave and roller structures and flow fields." Journal of Geophysical Research, Vol. 107, pp. 3072-3092. https://doi.org/10.1029/2000JC000755
  5. Jansen, P.C.M. (1986). "Laboratory observations of the kinematics in the aerated region of breaking waves." Coastal Engineering, Vol. 9, pp. 453-477. https://doi.org/10.1016/0378-3839(86)90008-6
  6. Jung, K.H., and Ryu, Y.U. (2012). "Multi-phase flow velocity measurement technique using shadow graphic images." Journal of Ocean Engineering and Technology, Vol. 26, No. 3, pp. 61-65. https://doi.org/10.5574/KSOE.2012.26.3.061
  7. Ryu, Y.U., Lee, J.I., and Kim, Y.T. (2007). "Behavior of non-buoyant round jet under waves." Journal of Korean Society of Coastal and Ocean Engineers, Vol. 19, No. 6, pp. 596-605.