References
- Bamber, D. (1975). The area above the ordinal dominance graph and the area below the receiver operating characteristic graph, Journal of Mathematical Psychology, 12, 387-415. https://doi.org/10.1016/0022-2496(75)90001-2
- Conover, W. J. (1980). Practical Nonparametric Statistics, John Wiley & Sons, New York.
- Egan, J. P. (1975). Signal Detection Theory and ROC Analysis, Academic Press, New York.
- Engelmann, B., Hayden, E. and Tasche, D. (2003). Testing rating accuracy, Risk, 16, 82-86.
- Faraggi, D. and Reiser, B. (2002). Estimation of the area under the ROC curve, Statistics in Medicine, 21, 3093-3106. https://doi.org/10.1002/sim.1228
- Fawcett, T. (2003). ROC graphs: Notes and practical considerations for data mining researchers, HP Labs Tech Report HPL-2003-4, Available from: http://www.hpl.hp.com/techreports/2003/HPL-2003-4.pdf
- Gibbons, J. D. (1971). Nonparametric Statistical Inference, McGraw-Hill, New York.
- Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve, Radiology, 143, 29-36. https://doi.org/10.1148/radiology.143.1.7063747
- Hong, C. S. (2009). Optimal threshold from ROC and CAP curves, Communications in Statistics- Simulation and Computation, 38, 2060-2072. https://doi.org/10.1080/03610910903243703
- Hong, C. S. and Cho, M. H. (2015). VUS and HUM represented with Mann-Whitney statistic, Communications for Statistical Applications and Methods, 22, 223-232. https://doi.org/10.5351/CSAM.2015.22.3.223
- Hong, C. S., Joo, J. S. and Choi, J. S. (2010). Optimal thresholds from mixture distributions, The Korean Journal of Applied Statistics, 23, 13-28. https://doi.org/10.5351/KJAS.2010.23.1.013
- Hong, C. S., Jung, E. S. and Jung, D. G. (2013). Standard criterion of VUS for ROC surface, The Korean Journal of Applied Statistics, 26, 977-985. https://doi.org/10.5351/KJAS.2013.26.6.977
- Hong, C. S. and Jung, D. G. (2014). Standard criterion of hypervolume under the ROC manifold, Journal of the Korean Data & Information Science Society, 25, 473-483. https://doi.org/10.7465/jkdi.2014.25.3.473
- Joseph, M. P. (2005). A PD validation framework for Basel II internal ratings-based systems, Available from: http://www.business-school.ed.ac.uk/waf/crcarchive/2005/papers/joseph-maurice.pdf
- Mann, H. B. and Whitney, D. R. (1947). On a test whether one of two random variables is stochasti- cally larger than the other, Annals of Mathematical Statistics, 18, 50-60. https://doi.org/10.1214/aoms/1177730491
- Provost, F. and Fawcett, T. (2001). Robust classification for imprecise environments, Machine Learning, 42, 203-231. https://doi.org/10.1023/A:1007601015854
- Randles, R. H. and Wolfe, D. A. (1979). Introduction to the Theory of Nonparametric Statistics, John Wiley & Sons, New York.
- Rosset, S. (2004). Model selection via the AUC, In Proceedings of the 21st International Conference of Machine Learning, Banff, Canada.
- Sobehart, J. R. and Keenan, S. C. (2001). Measuring default accurately, Risk: Credit Risk Special Report, 14, S31-S33.
- Swets, J. A. (1988). Measuring the accuracy of diagnostic systems, Science, 240, 1285-1293. https://doi.org/10.1126/science.3287615
- Swets, J. A., Dawes, R. M. and Monahan, J. (2000). Better decisions through science, Scientific American, 283, 82-87.
- Wilcoxon, F. (1945). Individual comparisons by ranking methods, Biometrics Bulletin, 1, 80-83. https://doi.org/10.2307/3001968
- Wilkie, A. D. (2004). Measures for comparing scoring systems. In L. C. Thomas, D. B. Edelman, and J. N. Crook (Eds.), Readings in Credit Scoring, Oxford University Press, Oxford, 51-62.
- Zou, K. H., O′Malley, A. J. and Mauri, L. (2007). Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models, Circulation, 115, 654-657. https://doi.org/10.1161/CIRCULATIONAHA.105.594929
Cited by
- Proposition of polytomous discrimination index and test statistics vol.27, pp.2, 2016, https://doi.org/10.7465/jkdi.2016.27.2.337
- Standardized polytomous discrimination index using concordance vol.27, pp.1, 2016, https://doi.org/10.7465/jkdi.2016.27.1.33
- Parameter estimation for the imbalanced credit scoring data using AUC maximization vol.29, pp.2, 2016, https://doi.org/10.5351/KJAS.2016.29.2.309