References
- Anscombe, F. J. and Glynn, W. J. (1983). Distribution of the kurtosis statistic b2 for normal samples, Biometrika, 70, 227-234.
- Baringhaus, L. and Henze, N. (1992). Limit distributions for Mardia's measure of multivariate skewness, Annals of Statistics, 20, 1889-1902. https://doi.org/10.1214/aos/1176348894
-
Bowman, K. O. and Shenton, L. R. (1975). Omnibus test contours for departures from normality based on
${\sqrt{b_1}}$ and$b_2$ , Biometrika, 62, 243-250. -
Bowman, K. O. and Shenton, L. R. (1986). Moment
${\sqrt{b_1}},{b_2}$ Techniques, In R. B. D'Agostino and M. A. Stephens (Eds.), Goodness-of-Fit Techniques, Marcel Dekker, New York, 279-329. -
D'Agostino, R. B. (1970). Transformation to normality of the null distribution of
$g_1$ , Biometrika, 57, 679-681. - D'Agostino, R. B. (1986). Tests for the normal distribution. In R. B. D'Agostino and M. A. Stephens (Eds.), Goodness-of-Fit Techniques, Marcel Dekker, New York, 367-420.
-
D'Agostino, R. B. and Pearson, E. S. (1973). Tests for departure from normality: Empirical results for the distributions of
$b_2$ and${\sqrt{b_1}}$ , Biometrika, 60, 613-622. -
D'Agostino, R. B. and Pearson, E. S. (1974). Correction and amendment: Tests for departure from normality: Empirical results for the distributions of
$b_2$ and${\sqrt{b_1}}$ , Biometrika, 61, 647. - De Wet, T. and Venter, J. H. (1972). Asymptotic distributions of certain test criteria of normality, South African Statistical Journal, 6, 135-149.
- Farrell, P. J., Salibian-Barrera, M. and Naczk, K. (2007). On tests for multivariate normality and associated simulation studies, Journal of Statistical Computation and Simulation, 77, 1065-1080. https://doi.org/10.1080/10629360600878449
- Fattorini, L. (1986). Remarks on the use of the Shapiro-Wilk statistic for testing multivariate normality, Statistica, 46, 209-217.
- Henze, N. (1994). On Mardia's kurtosis for multivariate normality, Communications in Statistics-Theory and Methods, 23, 1031-1045. https://doi.org/10.1080/03610929408831303
- Henze, N. (2002). Invariant tests for multivariate normality: A critical review, Statistical Papers, 43, 467-506. https://doi.org/10.1007/s00362-002-0119-6
- Henze, N. and Zirkler, B. (1990). A class of invariant consistent tests for multivariate normality, Communications in Statistics-Theory and Methods, 19, 3539-3617. https://doi.org/10.1080/03610929008830396
- Horswell, R. L. and Looney, S. W. (1992). A comparison of tests for multivariate normality that are based on measures of multivariate skewness and kurtosis, Journal of Statistical Computation and Simulation, 42, 21-38. https://doi.org/10.1080/00949659208811407
- Kendall, M. and Stuart, A. (1977). The Advanced Theory of Statistics, Vol. I, MacMillan Publishing Co., New York.
- Kim, N. (2004a). An approximate Shapiro-Wilk statistic for testing multivariate normality, The Korean Journal of Applied Statistics, 17, 35-47. https://doi.org/10.5351/KJAS.2004.17.1.035
- Kim, N. (2004b). Remarks on the use of multivariate skewness and kurtosis for testing multivariate normality, The Korean Journal of Applied Statistics, 17, 507-518. https://doi.org/10.5351/KJAS.2004.17.3.507
- Kim, N. (2005). The limit distribution of an invariant test statistic for multivariate normality, The Korean Communications in Statistics, 12, 71-86. https://doi.org/10.5351/CKSS.2005.12.1.071
- Kim, N. and Bickel, P. J. (2003). The limit distribution of a test statistic for bivariate normality, Statistica Sinica, 13, 327-349.
- Malkovich, J. F. and Afifi, A. A. (1973). On tests for multivariate normality, Journal of the American Statistical Association, 68, 176-179. https://doi.org/10.1080/01621459.1973.10481358
- Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications, Biometrika, 57, 519-530. https://doi.org/10.1093/biomet/57.3.519
- Mardia, K. V. (1974). Applications of some measures of multivariate skewness and kurtosis for testing normality and robustness studies, Sankhya: The Indian Journal of Statistics Series B, 36, 115-128.
-
Mardia, K. V. (1975). Assessment of multinormality and the robustness of Hotelling's
$T^2$ test, Applied Statistics, 24, 163-171. https://doi.org/10.2307/2346563 - Mecklin, C. J. and Mundfrom, D. J. (2005). A Monte Carlo comparison of the Type I and Type II error rates of tests of multivariate normality, Journal of Statistical Computation and Simulation, 75, 93-107. https://doi.org/10.1080/0094965042000193233
- Mudholkar, G. S., Srivastava, D. K. and Lin, C. T. (1995). Some p-variate adaptations of the Shapiro- Wilk test of normality, Communications of Statistics-Theory and Methods, 24, 953-985. https://doi.org/10.1080/03610929508831533
- Pearson, E. S. (1956). Some aspects of the geometry of statistics, Journal of the Royal Statistical Society Series A (General), 119, 125-146. https://doi.org/10.2307/2342880
- Pearson, E. S., D'Agostino, R. B. and Bowman, K. O. (1977). Tests for departure from normality: Comparison of powers, Biometrika, 64, 231-246. https://doi.org/10.1093/biomet/64.2.231
- Rao, C. R. (1948). Test of significance in multivariate analysis, Biometrika, 35, 58-79. https://doi.org/10.1093/biomet/35.1-2.58
- Romeu, J. L. and Ozturk, A. (1993). A comparative study of goodness-of-fit tests for multivariate normality, Journal of Multivariate Analysis, 46, 309-334. https://doi.org/10.1006/jmva.1993.1063
- Roy, S. N. (1953). On a heuristic method of test construction and its use in multivariate analysis, Annals of Mathematical Statistics, 24, 220-238. https://doi.org/10.1214/aoms/1177729029
- Royston, J. P. (1983). Some techniques for accessing multivariate normality based on the Shapiro-Wilk W, Applied Statistics, 32, 121-133. https://doi.org/10.2307/2347291
- Shapiro, S. S. and Francia, R. S. (1972). An approximate analysis of variance test for normality, Journal of the American Statistical Association, 67, 215-216. https://doi.org/10.1080/01621459.1972.10481232
- Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality (complete samples), Biometrika, 52, 591-611. https://doi.org/10.1093/biomet/52.3-4.591
- Srivastava, D. K. and Mudholkar, G. S. (2003). Goodness of fit tests for univariate and multivariate normal models, Handbook of Statistics, 22, 869-906. https://doi.org/10.1016/S0169-7161(03)22026-5
- Srivastava, M. S. (1984). A measure of skewness and kurtosis and a graphical method for assessing multivariate normality, Statistics & Probability Letters, 2, 263-267. https://doi.org/10.1016/0167-7152(84)90062-2
- Srivastava, M. S. and Hui, T. K. (1987). On assessing multivariate normality based on Shapiro-Wilk W statistic, Statistics & Probability Letters, 5, 15-18. https://doi.org/10.1016/0167-7152(87)90019-8
- Thode, H. C. (2002). Testing for Normality, Marcel Dekker, New York.
- Villasenor Alva, J. A. and Gonzalez Estrada, E. (2009). A generalization of Shapiro-Wilk's test for multivariate normality, Communications in Statistics-Theory and Methods, 38, 1870-1833. https://doi.org/10.1080/03610920802474465