DOI QR코드

DOI QR Code

Bayesian Curve-Fitting in Semiparametric Small Area Models with Measurement Errors

  • Hwang, Jinseub (National Evidence-based Healthcare Collaborating Agency) ;
  • Kim, Dal Ho (Department of Statistics, Kyungpook National University)
  • Received : 2015.04.20
  • Accepted : 2015.07.04
  • Published : 2015.07.31

Abstract

We study a semiparametric Bayesian approach to small area estimation under a nested error linear regression model with area level covariate subject to measurement error. Consideration is given to radial basis functions for the regression spline and knots on a grid of equally spaced sample quantiles of covariate with measurement errors in the nested error linear regression model setup. We conduct a hierarchical Bayesian structural measurement error model for small areas and prove the propriety of the joint posterior based on a given hierarchical Bayesian framework since some priors are defined non-informative improper priors that uses Markov Chain Monte Carlo methods to fit it. Our methodology is illustrated using numerical examples to compare possible models based on model adequacy criteria; in addition, analysis is conducted based on real data.

Keywords

References

  1. Battese, G. E., Harter, R. M. and Fuller, W. A. (1988). An error-components model for prediction of county crop areas using survey and satellite data, Journal of the American Statistical Association, 83, 28-36. https://doi.org/10.1080/01621459.1988.10478561
  2. Bhadra, D., Ghosh, M. and Kim, D. (2013). Estimation of median household income for small areas: A Bayesian semiparametric approach, Calcutta Statistical Association Bulletin, 64, 115-142.
  3. Fuller, W. A. (1987). Measurement Error Models, John Wiley & Sons, New York.
  4. Ghosh, M., Sinha, K. and Kim, D. (2006). Empirical and hierarchical Bayesian estimation in fi-nite population sampling under structural measurement error models, Scandinavian Journal of Statistics, 33, 591-608. https://doi.org/10.1111/j.1467-9469.2006.00492.x
  5. Gelman, A. E. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences, Statistical Science, 7, 457-472. https://doi.org/10.1214/ss/1177011136
  6. Hwang, J. S. and Kim, D. H. (2010). Semiparametric Bayesian estimation under structural measure-ment error model, Communications of the Korean Statistical Society, 17, 551-560. https://doi.org/10.5351/CKSS.2010.17.4.551
  7. Meng, X. L. (1994). Posterior predictive p-values. Annals of Statistics, 22, 1142-1160. https://doi.org/10.1214/aos/1176325622
  8. Opsomer, J. D., Claeskens, G., Ranalli, M. G., Kauermann, G. and Breidt, F. J. (2008). Non-parametric small area estimation using penalized spline regression, Journal of the Royal Statistical Society Series B (Statistical Methodology), 70, 265-286. https://doi.org/10.1111/j.1467-9868.2007.00635.x
  9. Rao, J. N. K. (2003). Small Area Estimation, John Wiley & Sons, New York.
  10. Ruppert, D.,Wand, M. P. and Carroll, R. J. (2003). Semiparametric Regression, Cambridge University Press, Cambridge.