참고문헌
- D. Arnon, Monomial bases in the Steenrod algebra, J. Pure Appl. Algebra 96 (1994), no. 3, 215-223. https://doi.org/10.1016/0022-4049(94)90099-X
- A. Baker and B. Richter, Quasisymmetric functions from a topological point of view, Math. Scand. 103 (2008), no. 2, 208-242. https://doi.org/10.7146/math.scand.a-15078
- M. G. Barratt and H. R. Miller, On the anti-automorphism of the Steenrod algebra, Contemp. Math. 12 (1981), 47-52.
- M. D. Crossley, Some Hopf algebras of Words, Glasg. Math. J. 48 (2006), no. 3, 575-582. https://doi.org/10.1017/S0017089506003302
- M. D. Crossley and N. D. Turgay, Conjugation invariants in the Leibniz-Hopf Algebra, J. Pure Appl. Algebra 217 (2013), no. 12, 2247-2254. https://doi.org/10.1016/j.jpaa.2013.03.003
- M. D. Crossley and N. D. Turgay, Conjugation invariants in the mod 2 dual Leibniz-Hopf algebra, Comm. Algebra 41 (2013), no. 9, 3261-3266. https://doi.org/10.1080/00927872.2012.682675
- M. D. Crossley and S. Whitehouse, On conjugation invariants in the dual Steenrod algebra, Proc. Amer. Math. Soc. 128 (2000), no. 9, 2809-2818. https://doi.org/10.1090/S0002-9939-00-05283-7
- D. M. Davis, The anti-automorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 44 (1974), 235-236. https://doi.org/10.1090/S0002-9939-1974-0328934-1
- R. Ehrenborg, On posets and Hopf algebras, Adv. Math. 119 (1996), no. 1, 1-25. https://doi.org/10.1006/aima.1996.0026
- I. M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh, and J. Y. Thibon, Noncommutative symmetric functions, Adv. Math. 112 (1995), no. 2, 218-348. https://doi.org/10.1006/aima.1995.1032
- V. Giambalvo and H. R. Miller, More on the anti-automorphism of the Steenrod algebra, Algebr. Geom. Topol. 11 (2011), no. 5, 2579-2585. https://doi.org/10.2140/agt.2011.11.2579
- M. Hazewinkel, The algebra of quasi-symmetric functions is free over the integers, Adv. Math. 164 (2001), no. 2, 283-300. https://doi.org/10.1006/aima.2001.2017
- M. Hazewinkel, Symmetric functions, noncommutative symmetric functions, and quasisymmetric functions, Acta Appl. Math. 75 (2003), 55-83. https://doi.org/10.1023/A:1022323609001
- S. Kaji, Maple script for conjugation and product in the (dual) Leibniz-Hopf algebra and Steenrod algebra, available at http://www.skaji.org/code.
- C. Malvenuto and C. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra 177 (1995), no. 3, 967-982. https://doi.org/10.1006/jabr.1995.1336
- J. Milnor, The Steenrod algebra and its dual, Ann. of Math. 67 (1958), 150-171. https://doi.org/10.2307/1969932
- J. Silverman, Conjugation and excess in the Steenrod algebra, Proc. Amer. Math. Soc. 119 (1993), no. 2, 657-661. https://doi.org/10.1090/S0002-9939-1993-1152292-8
- N. E. Steenrod, Products of cocycles and extensions of mappings, Ann. of Math. 48 (1947), 290-320. https://doi.org/10.2307/1969172
- N. E. Steenrod and D. B. A. Epstein, Cohomology operations, Ann. of Math. Stud. 50, Princeton Univ. Press, Princeton, 1962.
- P. D. Straffin, Identities for conjugation in the Steenrod algebra, Proc. Amer. Math. Soc. 49 (1975), 253-255. https://doi.org/10.1090/S0002-9939-1975-0380796-3
- N. D. Turgay, An alternative approach to the Adem relations in the mod 2 Steenrod algebra, Turkish J. Math. 38 (2014), no. 5, 924-934. https://doi.org/10.3906/mat-1309-6
-
G. Walker and R. M. W. Wood, The nilpotence height of
$Sq^{2n}$ , Proc. Amer. Math. Soc. 124 (1996), no. 4, 1291-1295. https://doi.org/10.1090/S0002-9939-96-03203-0 - R. M. W. Wood, Problems in the Steenrod algebra, Bull. London Math. Soc. 30 (1998), no. 5, 449-517. https://doi.org/10.1112/S002460939800486X
피인용 문헌
- The Arnon bases in the Steenrod algebra vol.0, pp.0, 2020, https://doi.org/10.1515/gmj-2018-0076