References
- American Concrete Institute (1995), Building Code Requirements for Structural Concrete, ACI 318-95.
- American Society of Testing And Materials (2014), Standard Test Method for Compressive Strength of Cylindirical Concrete Specimens, ASTM C-39.
- ANSYS (2014), Swanson analysis system.
- Beushausen, H. and Dittmer, T. (2015), "The influence of aggregate type on the strength and elastic modulus of high strength concrete", Constr. Build. Mater., 74, 132-139. https://doi.org/10.1016/j.conbuildmat.2014.08.055
- Cotsovos, D.M. and Pavlovic M.N. (2008), "Numerical investigation of concrete subjected to compressive impact loading. Part 2: Parametric investigation of factors affecting behaviour at high loading rates", Comput. Struct., 86(1-2), 164-180. https://doi.org/10.1016/j.compstruc.2007.05.015
- Del Viso, J.R., Carmona, J.R. and Ruiz, G. (2008) "Shape and size effects on the compressive strength of high-strength concrete", Cement. Concrete. Res., 38(3), 386-395. https://doi.org/10.1016/j.cemconres.2007.09.020
- Eurocode 2 (2004), Design of Concrete Structures. General Rules and Rules for Buildings BS EN 1992-1-1.
- Gesoglu, M., Guneyisi, E. and Ozturan, T. (2002), "Effects of end conditions on compressive strength and static elastic modulus of very high strength concrete, Cement. Concrete. Res., 32(10), 1545-1550. https://doi.org/10.1016/S0008-8846(02)00826-8
- Gorkem, S.E. (2012), "Experimental and theoric approach to slanted concrete cylinders subjected to uniaxial pressure", Proceedins of the 4th International Conference on Seismic Retrofitting, Earthquake Engineering and New Technologies, Tabriz, May.
- Husem, M. and Gozutok, S. (2005), "The effects of low temperature curing on the compressive strength of ordinary and high performance concrete", Constr. Build. Mater., 19(1), 49-53. https://doi.org/10.1016/j.conbuildmat.2004.04.033
- Meddah, M.S., Zitouni, S. and Belaabes, S., (2010), "Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete", Constr. Build. Mater., 24(4), 505-512. https://doi.org/10.1016/j.conbuildmat.2009.10.009
- Momber, A.W. (2000), "The fragmentation of standard concrete cylinders under compression: the role of secondary fracture debris", Eng. Fract. Mech., 67(5), 445-459. https://doi.org/10.1016/S0013-7944(00)00084-9
- Murray, Y.D., Abu Odeh, A. and Bligh, R. (2007), Evaluation of LS-DYNA Concrete Material Model 159, U.S. Department of Transportation, Publication No: FHWA-HRT-05-063.
- Muthukumar, M. and Kumar, G. (2014), "Failure criteria of concrete- A review", Comput. Concr., 14(5), 503-526. https://doi.org/10.12989/cac.2014.14.5.503
- Nikbin, I.M., Destehani, M., Beygi, M.H.A. and Rezvani, M. (2014), "Effects of cube size and placement direction on compressive strength of self-consolidating concrete", Constr. Build. Mater., 59, 144-150. https://doi.org/10.1016/j.conbuildmat.2014.02.008
- Patil, A., Chore, H.S. and Dode P.A. (2014), "Effect of curing condition on strength of geopolymer concrete", Adv. Concr. Constr., 2(1), 29-37. https://doi.org/10.12989/acc.2014.2.1.029
- Papadakis, V.G. and Demis, S. (2013), "Predictive modeling of concrete compressive strength based on cement strength class", Comput. Concr., 11(6), 587-632. https://doi.org/10.12989/cac.2013.11.6.587
- Rao, G.A. and Prasad B.K.R. (2011), "Influence of interface properties on fracture behaviour of concrete", Ind. Acad. Sci., 36(2), 193-208.
- Sim, J., Yang, K.H. and Jeon, J.K., (2013), "Influence of aggregate size on the compressive size effect according to different concrete types", Constr. Build. Mater., 44, 716-725. https://doi.org/10.1016/j.conbuildmat.2013.03.066
- Teng, S., Liu, Y. and Lim, T.Y.D. (2014), "Determination of fracture energy of ultra high strength concrete", Eng. Fract. Mech., 131, 602-615. https://doi.org/10.1016/j.engfracmech.2014.09.017
- Turkish Standards Institute (2002), Testing Fresh Concrete. Sampling., TS EN 12350-1 : Part I.
- Turkish Standards Institute (2002), Testing Hardened Concrete. Compressive Strengths of Test Specimens, TS EN 12390-3 : Part III.
- Turkish Standards Institute (2002), Concrete-Testing Hardened Concrete. Compressive Strength - Properties of Test Machine,TS EN 12390-4 : Part III.
- Van Der Vurst, F., Desnerck, P., Peirs, J. and De Schutter, G. (2014), "Shape factors of self-compacting concrete specimens subjected to uniaxial loading", Cement. Concrete. Comp., 54, 62-69. https://doi.org/10.1016/j.cemconcomp.2014.05.009
- Wang, J. and Yan, P. (2013), "Evaluation of early age mechanical properties of concrete in real structure", Comput. Concr., 12(1), 53-64. https://doi.org/10.12989/cac.2013.12.1.053
- Zandi, M. and Gorkem, S.E. (2013), "Experimental and theoric approach to slanted concrete cylinders subjected to uniaxial pressure", Middle-East. J. Sci. Res., 14 ,1489-1497.
- Zhutovsky, S., Kovler, K. and Bentur, A. (2013), "Effect of hybrid curing on cracking potential of high-performance concrete", Cement. Concrete. Res., 54, 36-42. https://doi.org/10.1016/j.cemconres.2013.08.001