References
- ASTM C1260-94, Standard test method for determining the potential alkali reactivity of combinations of cementious materials and aggregate (accelerated mortar-bar method), Annual Book of ASTM Standards 2002, 4(2), American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103.
- Bazant, Z.P. and Steffens, A. (2000), "Mathematical model for kinetics of alkali silica reaction in concrete", Cement. Concrete. Res., 30(3), 419-428. https://doi.org/10.1016/S0008-8846(99)00270-7
- Chatterji, S. and Thaulow, N. (2000), "Some fundamentals of alkali-silica reaction", Proceedings of the 11th International Conference on Alkali-Aggregate Reaction in concrete, Quebec City, Quebec.
- CSA A23.2-25A-00, Detection of alkali silica reactive aggregate by accelerated expansion of mortar bars. CSA A23.2-00: Methods of Test for concrete, Canadian Standards Association, Mississauga (ON).
- Dent-Glasser, L.S. and Kataoka, N. (1981), "The chemistry of alkali-aggregate reaction", Proceedings of the 5th International Conference on Alkali-Aggregate Reaction in concrete, Cape Town, South Africa.
- Diamond, S. and Thaulow, N. (1974), "A study of expansion due to alkali-silica reaction as conditioned by the grain size of the reactive aggregate", Cement. Concrete. Res., 4 (4), 591-607. https://doi.org/10.1016/0008-8846(74)90009-X
- Dunant, C.F. and Scrivener, K.L. (2012), "Effects of aggregate size on alkali-silica-reaction induced expansion", Cement. Concrete. Res., 42(6), 745-751. https://doi.org/10.1016/j.cemconres.2012.02.012
- Faiz, U.A. (2014), "Effects of Alkali solutions on corrosion durability of geopolymer concrete", Adv. Concrete. Constr., 2(2), 109-123 https://doi.org/10.12989/acc.2014.2.2.109
- Gao, X.X., Cyr, M., Multon, S. and Sellier, A. (2013), "A three step method for the recovery of aggregates from concrete", Constr. Build. Mater., 45, 262-269. https://doi.org/10.1016/j.conbuildmat.2013.04.003
- Gao, X.X., Multon, S., Cyr, M. and Sellier, A. (2012), "Alkali-silica reaction (ASR) expansion: Pessimum effect versus scale effect", Cement. Concrete. Res., 44, 25-33.
-
Hasni, L., Gallias, Y. and Salomon, M. (1993), "Appreciation des risques d'alcali reaction dans les betons de sables", Rapport de recherche
$n^{\circ}$ 41020, CEBTP, St Remyles-Chevreuses, 53. - Hobbs, D.W. and Gutteridge, W.A. (1979), "Particle size of aggregate and its influence upon the expansion caused by the alkali-silica reaction", Mag. Concrete. Res., 31(109), 235-242. https://doi.org/10.1680/macr.1979.31.109.235
- Khater, H.M. and Abd el Gawaad, H.A. (2015), "Characterization of Alkali activated geopolymer mortar doped with MWCNT", Adv. Mater. Res., 4(1), 45-60 https://doi.org/10.12989/amr.2015.4.1.45
- Kuroda, T., Inoue, S., Yoshino, A. and Nishibayashi, S. (2004), "Effects of particle size grading and content of reactive aggregate on ASR expansion of mortars subjected to autoclave method", Proceedings of the 12th International Conference on Alkali-Aggregate Reaction in concrete, Beijing, China.
- Kuroda, T., Nishibayashi, S., Inoue, S. and Yoshino, A. (2000), "Effects of the particle size of reactive fine aggregate and accelerated test conditions on ASR expansion of mortar bar", Trans. Jap. Concrete. Ins., 22, 113-118.
- Lu, D., Fournier, B. and Grattan-Bellew, P.E. (2006), "Evaluation of accelerated test methods for determining alkali-silica reactivity of concrete aggregates", Cement. Concrete. Comp., 28(6), 546-554. https://doi.org/10.1016/j.cemconcomp.2006.03.001
- Multon, S., Cyr, M., Sellier, A., Diederich, P. and Petit, L. (2010), "Effects of aggregate size and alkali content on ASR expansion", Cement. Concrete. Res., 40(4), 508-516. https://doi.org/10.1016/j.cemconres.2009.08.002
- Multon, S., Cyr, M., Sellier, A., Leklou, N. and Petit, L. (2008), "Coupled effects of aggregate size and alkali content on ASR expansion", Cement. Concrete. Res., 38(3), 350-359. https://doi.org/10.1016/j.cemconres.2007.09.013
- Oberholster, R.E. and Davies, G. (1986), "An accelerated method for testing the potential alkali reactivity of siliceous aggregates", Cement. Concrete. Res., 16(2), 181-189. https://doi.org/10.1016/0008-8846(86)90134-1
- Pietruszczak, S., Ushaksaraei, R. and Gocevski, V. (2013), "Modelling of the effects of Alkali-aggregate reaction in reinforced concrete structures", Comput. Concr. Int. J., 12(5), 627-650. https://doi.org/10.12989/cac.2013.12.5.627
- Poyet, S. (2003), "Study of the degradation of concrete structures affected by alkali-silica reaction:Experimental approach and multi-scale numerical modeling of damage in an environment variable hydro-chemo-mechanical", Ph.D. thesis, Marne-La-Vallee University, Marne-La-Vallee.
- Poyet, S., Sellier, A., Capra, B., Foray, G., Torrenti, J.M., Cognon, H. and Bourdarot, E. (2007), "Chemical modelling of alkali silica reaction: influence of the reactive aggregate size distribution", Mater. Struct., 40(2), 229-239. https://doi.org/10.1617/s11527-006-9139-3
- Raymar, K., Topal, A. and Andic, O. (2005), "Effects of aggregate size and angularity on alkali-silica reaction", Cement. Concrete. Res., 35(11), 2165-2169. https://doi.org/10.1016/j.cemconres.2005.03.010
- RILEM TC191-ARP-AAR02 (2000), "Detection of potential alkali-reactivity of aggregates-the ultra-accelerated mortar-bar test", Mater. Struct., 33, 283-293. https://doi.org/10.1007/BF02479697
- Sanchez, L.F.M., Multon, S., Sellier, A., Cyr, M., Fournier, B. and Jolin, M. (2014), "Comparative study of chemo-mechanical modelling for alkali-silica reaction (ASR) with experimental evidences", Constr. Build. Mater., 72(15), 301-315. https://doi.org/10.1016/j.conbuildmat.2014.09.007
- Sellier, A., Bournazel, J.P. and Mébarki, A. (1996), "Modelling the alkali aggregate reaction within a probabilistic frame-work, in: A. Shayan (Ed.)", Proceedings of the 10th International Conference on Alkali-Aggregate Reaction, Melbourne, Australia.
- Wang, H. and Gillott, J.E. (1991), "Mechanisms of alkali-silica reaction and the significance of calcium hydroxide", Cement. Concrete. Res., 21(4), 647-654. https://doi.org/10.1016/0008-8846(91)90115-X
- Wigum, B.J. and French, W.J. (1996), "Sequential examination of slowly expanding alkami-reavtive aggregates in accelerated mortar bar testing", Mag. Concrete. Res., 48 (177), 281-292. https://doi.org/10.1680/macr.1996.48.177.281
- Yuksel, C., Ahari, R.S., Ahari, B.A. and Ramyar, K. (2013), "Evaluation of three test methods for determining the alkali-silica reactivity of glass aggregate", Cement. Concrete. Comp., 38, 57-64. https://doi.org/10.1016/j.cemconcomp.2013.03.002
- Zhang, C.A., Wang, M., Tang, B. and Wu, N. (1999), "Influence of aggregate size and aggregate size grading on ASR expansion", Cement. Concrete. Res., 29 (9), 1393-1396. https://doi.org/10.1016/S0008-8846(99)00099-X
- Zhang, X. and Groves, G.W. (1990), "The alkali silica reaction in OPC/silica glass mortar with particular reference to pessimum effects", Adv. Cem. Res., 3(9), 9-13. https://doi.org/10.1680/adcr.1990.3.9.9
- Zhongzi, X., Yang, C. and Lu, D. (1998), "Main parameters in the new test method for alkali-silica reactivity", J. Nanjing. Univ. Chem. Technol., 20(2), 1-7.
Cited by
- Prediction models for compressive strength of concrete with Alkali-activated binders vol.17, pp.4, 2016, https://doi.org/10.12989/cac.2016.17.4.523
- Effectiveness of mineral additives in mitigating alkali-silica reaction in mortar vol.20, pp.6, 2015, https://doi.org/10.12989/cac.2017.20.6.705
- Pozzolanic properties of trachyte and rhyolite and their effects on alkali-silica reaction vol.11, pp.4, 2015, https://doi.org/10.12989/acc.2021.11.4.299