DOI QR코드

DOI QR Code

On a (r, s)-Analogue of Changhee and Daehee Numbers and Polynomials

  • CHO, YOUNG-KI (Microwave & Antenna Lab., Kyungpook National University) ;
  • KIM, TAEKYUN (Department of Mathematics, Kwangwoon University) ;
  • MANSOUR, TOUFIK (Department of Mathematics, University of Haifa) ;
  • RIM, SEOG-HOON (Department of Mathematics Education, Kyungpook National University)
  • Received : 2014.03.03
  • Accepted : 2014.07.14
  • Published : 2015.06.23

Abstract

We consider Witt-type formula for the extension of Changchee and Daehee numbers and polynomials. We derive some identities and properties of those numbers and polynomials which are related to special polynomials.

Keywords

References

  1. S. Araci, M. Acikgoz, E. Sen, On the extended Kim's p-adic q-deformed fermionic integrals in the p-adic integer ring, J. Number Theory, 133:10(2013), 3348-3361. https://doi.org/10.1016/j.jnt.2013.04.007
  2. R. Askey, The q-gamma and q-beta functions, Appl. Anal., 8(1978), 125-141. https://doi.org/10.1080/00036817808839221
  3. D. V. Dolgy, T. Kim, B. Lee, C. S. Ryoo, On the q-analogue of Euler measure with weight ${\alpha}$, Adv. Stud. Contemp. Math., 21:4(2011), 429-435
  4. D. S. Kim, T. Kim, W. J. Kim and D. V. Dolgy, A note on Eulerian polynomials, Abstract and Applied Analysis, Article in press.
  5. T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory, 76(1999), 320-329. https://doi.org/10.1006/jnth.1999.2373
  6. T. Kim, q-Volkenborn integration, Russ. J. Math Phys., 19(2002), 288-299.
  7. T. Kim, Some identities on the q-Euler polynomials of higher order and q-stirling numbers by the fermionic p-adic integral on ${\mathbb{Z}}_p$, Russ. J. Math. Phys., 16(2009), 484-491. https://doi.org/10.1134/S1061920809040037
  8. T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl., 326(2007), 1458-1465. https://doi.org/10.1016/j.jmaa.2006.03.037
  9. T. Kim, On the analogs of Euler numbers and polynomials associated with p-adic q-integral on ${\mathbb{Z}}_p$ at q = 1, J. Math. Anal. Appl., 331(2007), 779-792. https://doi.org/10.1016/j.jmaa.2006.09.027
  10. T. Kim, A note on Changhee polynomials and numbers, Adv. Studies Theor. phys., 7:20(2013), 993-1003.
  11. T. Kim, A note on Daehee polynomials and numbers, Appl. Math. Sci., 7:120(2013), 5969-5976.
  12. T. Kim, D.S. Kim, T. Mansour, S.H. Rim and M. Schork, Umbral calulus and Sheffer sequence of polynomials, J. Math. Phys., 54(2013), 083504. https://doi.org/10.1063/1.4817853
  13. T. Kim, T. Mansour, S.-H. Rim and J.-J. Seo, A note on q-Changhee polynomials and numbers, Advanced Studies in Theoretical Physics, 8:1(2014), 35-41.
  14. T. Kim, S.-H. Lee, T. Mansour and J.-J. Seo, A note on q-Daehee polynomials and numbers, Advanced Studies in Contemporary Mathematics, 24:2(2014), 131-139.
  15. T. Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J., 31:3(2013), 353-371. https://doi.org/10.1007/s11139-012-9452-0