DOI QR코드

DOI QR Code

지상관측 자료를 이용한 AMSR2 토양수분자료의 편이 보정

Bias Correction of AMSR2 Soil Moisture Data Using Ground Observations

  • Kim, Myojeong (School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National University) ;
  • Kim, Gwangseob (School of Architectural, Civil, Environmental and Energy Engineering, Kyungpook National University) ;
  • Yi, Jaeeung (Division of Environmental, Civil & Transportation Engineering Ajou University)
  • 투고 : 2015.05.08
  • 심사 : 2015.06.29
  • 발행 : 2015.07.30

초록

Quantitative variability of AMSR2 (Advanced Microwave Scanning Radiometer 2) soil moisture data shows that the remotely sensed soil moisture is underestimated during Spring and Winter seasons and is overestimated during Summer and Fall seasons. Therefore the bias correction of the remotely sensed data is essential for the purpose of water resource management. To enhance their applicability, the bias of AMSR2 soil moisture data was corrected using ground observation data at Cheorwon Chuncheon, Suwon, Cheongju, Jeonju, and Jinju sites. Test statistics demonstrated that the correlation coefficient R is improved from 0.107~0.328 to 0.286~0.559 and RMSE is improved from 9.46~14.36 % to 5.38~9.62 %. Bias correction using ground network data improved the applicability of remotely sensed soil moisture data.

키워드

참고문헌

  1. Brocca, L., S. Hasenauer, T. Lacava, F. Melone, T. Moramarco, W. Wagner, W. Dorigo, P. Matgen, J. Martinez-Fernandez, P. Llorens, J. Latron, C. Martin, and M. Bittelli, 2011. Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remate sensing 115: 3390-3408. https://doi.org/10.1016/j.rse.2011.08.003
  2. Chen, J., F. P. Brissette, and R. Leconte, 2011. Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. Journal of Hydrology 401(3): 190-202. https://doi.org/10.1016/j.jhydrol.2011.02.020
  3. Choi, M., and J. M. Jacobs, 2007. Soil moisture variability of root zone profiles within SMEX02 remote sensing footprints. Advances in Water Resources 30(4): :883-896. https://doi.org/10.1016/j.advwatres.2006.07.007
  4. Draper, C. S., J. P. Walker, P. J. Steinle, de Jeu, R. A., and T. R. Holmes, 2009. An evaluation of AMSR-E derived soil moisture over Australia. Remote Sensing of Environment, 113(4): 703-710. https://doi.org/10.1016/j.rse.2008.11.011
  5. Hur, Y. M., and M. H. Choi, 2011. Advanced microwave scanning radiometer E soil moisture evaluation for Haenam flux monitoring network site. Korean Journal of Remote Sensing 27(2): 131-140 (in Korean). https://doi.org/10.7780/kjrs.2011.27.2.131
  6. Jackson, T. J., P. J. Starks, D. D. Bosch, M. Seyfried, D. C. Goodrich, and M. S. Moran, 2010. Validation of advanced microwave scanning radiometer soil moisture products. IEEE Transactions on Geoscience and Remote Sensing, 48(10): 4256-4272. https://doi.org/10.1109/TGRS.2010.2051035
  7. Kim, G. S., and J. P. Kim, 2011. Corelation analysis between soil moisture retrieved from satellite images and ground network measurements, Journal of the Korean Association of Geographic Information Studies 14(2): 69-81 (in Korean). https://doi.org/10.11108/kagis.2011.14.2.069
  8. Kim, O. K., J. Y. Choi, M. W. Jang, S. H. Yoo, W. H. Nam, J. H. Lee, and J. K. Noh, 2006. Watershed scale drought assessment using soil moisture index, Journal of the Korean Society of Agricultural Engineers 48(6): 3-13 (in Korean). https://doi.org/10.5389/KSAE.2006.48.6.003
  9. Kwon, H. J., S. C. Shin, and S. J. Kim, 2005. Climatic water balance analysis using NOAA/AVHRR satellite images, Journal of the Korean Society of Agricultural Engineers 47(1): 3-9 (in Korean). https://doi.org/10.5389/KSAE.2005.47.1.003
  10. Laiolo, P., S. Gabellani, L. Pulvirenti, G. Boni, R. Rudari, F. Delogu, F. Silvestro, L. Campo, F. Fascetti, N. Pierdicca, R. Crapolicchio, S. Hasenauer, and S. Puca, 2014. Validation of remote sensing soil moisture products with a distributed continuous hydrological model. In Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International, 3319-3322. Quebec City, Canada.: IEEE.
  11. Leander, R., and T. A. Buishand, 2007. Resampling of regional climate model output for the simulation of extreme river flows. Journal of Hydrology 332(3): 487-496. https://doi.org/10.1016/j.jhydrol.2006.08.006
  12. Lee, G. Y., S. H. Kim, K. H. Kim, and H. S. Lee, 2005. Analysis of soil moisture recession characteristics on hillslope through the intensive monitoring using TDR. Korean Journal of Agricultural and Forest Meteorology 7(1): 79-91 (in Korean).
  13. Park, E. J., C. S. Hwang, and J. C. Seong, 2002. The analysis of drought susceptibility using soil moisture information and spatial factors involved in satellite imagery. The Journal of GIS Association of Korea 10(3): 481-492 (in Korean).
  14. Pellarin, T., S. Louvet, C. Gruhier, G. Quantin, and C. Legout, 2013. A simple and effective method for correcting soil moisture and precipitation estimates using AMSR-E measurements. Remote Sensing of Environment, 136: 28-36. https://doi.org/10.1016/j.rse.2013.04.011
  15. Suh, A. S., I. C. Shin, J. S. Park, and S. W. Hong, 2011. An inversion algorithm for estimating soil moisture using satellite-based microwave observation. Proceedings of the Korea Water Resources Association Conference, 95. Daegu, Korea.: KWRA (in Korean).
  16. Sunwoo, W. Y., D. E. Kim, S. H. Hwang, and M. H. Choi, 2014. Analysis of regional antecedent wetness conditions using remotely sensed soil moisture and point scale rainfall data. Korean Journal of Remote Sensing 30(5): 587-596 (in Korean). https://doi.org/10.7780/kjrs.2014.30.5.4
  17. Ye, Q., L. Chai, L. Jiang, and S. Zhao, 2014. A downscaling approach of phase transition water content using AMSR2 and MODIS products. In Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International 3323-3326. Quebec City, Canada.: IEEE.