References
- Brocca, L., S. Hasenauer, T. Lacava, F. Melone, T. Moramarco, W. Wagner, W. Dorigo, P. Matgen, J. Martinez-Fernandez, P. Llorens, J. Latron, C. Martin, and M. Bittelli, 2011. Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remate sensing 115: 3390-3408. https://doi.org/10.1016/j.rse.2011.08.003
- Chen, J., F. P. Brissette, and R. Leconte, 2011. Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. Journal of Hydrology 401(3): 190-202. https://doi.org/10.1016/j.jhydrol.2011.02.020
- Choi, M., and J. M. Jacobs, 2007. Soil moisture variability of root zone profiles within SMEX02 remote sensing footprints. Advances in Water Resources 30(4): :883-896. https://doi.org/10.1016/j.advwatres.2006.07.007
- Draper, C. S., J. P. Walker, P. J. Steinle, de Jeu, R. A., and T. R. Holmes, 2009. An evaluation of AMSR-E derived soil moisture over Australia. Remote Sensing of Environment, 113(4): 703-710. https://doi.org/10.1016/j.rse.2008.11.011
- Hur, Y. M., and M. H. Choi, 2011. Advanced microwave scanning radiometer E soil moisture evaluation for Haenam flux monitoring network site. Korean Journal of Remote Sensing 27(2): 131-140 (in Korean). https://doi.org/10.7780/kjrs.2011.27.2.131
- Jackson, T. J., P. J. Starks, D. D. Bosch, M. Seyfried, D. C. Goodrich, and M. S. Moran, 2010. Validation of advanced microwave scanning radiometer soil moisture products. IEEE Transactions on Geoscience and Remote Sensing, 48(10): 4256-4272. https://doi.org/10.1109/TGRS.2010.2051035
- Kim, G. S., and J. P. Kim, 2011. Corelation analysis between soil moisture retrieved from satellite images and ground network measurements, Journal of the Korean Association of Geographic Information Studies 14(2): 69-81 (in Korean). https://doi.org/10.11108/kagis.2011.14.2.069
- Kim, O. K., J. Y. Choi, M. W. Jang, S. H. Yoo, W. H. Nam, J. H. Lee, and J. K. Noh, 2006. Watershed scale drought assessment using soil moisture index, Journal of the Korean Society of Agricultural Engineers 48(6): 3-13 (in Korean). https://doi.org/10.5389/KSAE.2006.48.6.003
- Kwon, H. J., S. C. Shin, and S. J. Kim, 2005. Climatic water balance analysis using NOAA/AVHRR satellite images, Journal of the Korean Society of Agricultural Engineers 47(1): 3-9 (in Korean). https://doi.org/10.5389/KSAE.2005.47.1.003
- Laiolo, P., S. Gabellani, L. Pulvirenti, G. Boni, R. Rudari, F. Delogu, F. Silvestro, L. Campo, F. Fascetti, N. Pierdicca, R. Crapolicchio, S. Hasenauer, and S. Puca, 2014. Validation of remote sensing soil moisture products with a distributed continuous hydrological model. In Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International, 3319-3322. Quebec City, Canada.: IEEE.
- Leander, R., and T. A. Buishand, 2007. Resampling of regional climate model output for the simulation of extreme river flows. Journal of Hydrology 332(3): 487-496. https://doi.org/10.1016/j.jhydrol.2006.08.006
- Lee, G. Y., S. H. Kim, K. H. Kim, and H. S. Lee, 2005. Analysis of soil moisture recession characteristics on hillslope through the intensive monitoring using TDR. Korean Journal of Agricultural and Forest Meteorology 7(1): 79-91 (in Korean).
- Park, E. J., C. S. Hwang, and J. C. Seong, 2002. The analysis of drought susceptibility using soil moisture information and spatial factors involved in satellite imagery. The Journal of GIS Association of Korea 10(3): 481-492 (in Korean).
- Pellarin, T., S. Louvet, C. Gruhier, G. Quantin, and C. Legout, 2013. A simple and effective method for correcting soil moisture and precipitation estimates using AMSR-E measurements. Remote Sensing of Environment, 136: 28-36. https://doi.org/10.1016/j.rse.2013.04.011
- Suh, A. S., I. C. Shin, J. S. Park, and S. W. Hong, 2011. An inversion algorithm for estimating soil moisture using satellite-based microwave observation. Proceedings of the Korea Water Resources Association Conference, 95. Daegu, Korea.: KWRA (in Korean).
- Sunwoo, W. Y., D. E. Kim, S. H. Hwang, and M. H. Choi, 2014. Analysis of regional antecedent wetness conditions using remotely sensed soil moisture and point scale rainfall data. Korean Journal of Remote Sensing 30(5): 587-596 (in Korean). https://doi.org/10.7780/kjrs.2014.30.5.4
- Ye, Q., L. Chai, L. Jiang, and S. Zhao, 2014. A downscaling approach of phase transition water content using AMSR2 and MODIS products. In Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International 3323-3326. Quebec City, Canada.: IEEE.