DOI QR코드

DOI QR Code

외부 환경적 요인에 의한 파이프랙 구조물의 열적 거동

Thermal Behavior of a Pipe-Rack Structure Subjected to Environmental Factors

  • Lee, Jong-Han (Department of Civil Engineering, Daegu University) ;
  • Lee, Jong-Jae (Department of Civil Engineering, Sejong University) ;
  • Kim, Sung-Yeon (Civil Engineering Team, Hanil Engineering & Construction)
  • 투고 : 2015.06.22
  • 심사 : 2015.06.26
  • 발행 : 2015.06.30

초록

파이프랙 구조물은 고온 고압의 파이프를 지지하며 플랜트의 운전 안전성을 좌우하는 매우 중요 구조물이다. 따라서, 파이프랙 구조물의 손상은 산업 전반에 부정적인 파급효과를 가져옴과 동시에 인명 및 재산상의 막대한 피해까지 가져오게 된다. 특히, 파이프랙 구조물은 외부환경에 노출되어 있어, 구조물의 적절한 설계 및 유지관리를 위하여 환경적 영향에 의한 거동 특성을 평가할 필요가 있다. 따라서, 가장 널리 설계되어지는 하나의 파이프랙 구조물을 대상 구조물로 선정하여 열-구조 연성해석을 실시하여 파이프랙 구조물의 온도분포와 열응력을 평가하였다. 외부 환경적 요인으로는 국내의 여수지역과 중동의 사우디 지역을 고려하여 파이프의 운전조건과 함께 외부환경 영향인자에 대한 고려 필요성을 검증하였다.

Pipe-rack structures supporting high temperature and pressure are of great importance to ensure the safety of the operation of the plants. If some damage occurred in the pipe-rack structure, the facilities not only bring damage to the commercial property, but also result in economic losses. Specially, since pipe-rack structures are exposed to various environmental conditions, it is essential to evaluate the thermal behavior of the structure caused by environmental conditions for the appropriate design and maintenance of the pipe-rack structure. Thus, based on a selected, typical pipe-rack structure, a thermal-stress coupled analysis was conducted to evaluate the temperature distributions and thermal stresses of the structure. For this, this study accounted for the operating condition of the pipe and the effect of environmental conditions, Yeosu in South Korea and Saudi Arabia in the Middle East. The results of the study showed the need for accounting for a variance in the environmental factors to evaluate the thermal behavior of the pipe-rack structure along with the working condition of pipe.

키워드

참고문헌

  1. ANSYS 13.0. Theory reference for ANSYS and ANSYS Workbench, ANSYS Inc., Pennsylvania, USA.
  2. AISC. (2005). Specification for structural steel buildings, American Institute of Steel Construction (AISC) Chicago, USA.
  3. ASCE 7. (2010). Minimum design loads for buildings and other structures, American Society of Civil Engineers (ASCE), Virginia, USA.
  4. AIK. (2009). Korean building code, Architecture Institute of Korea (AIK), Korea [in Korean].
  5. AutoCAD. (2014). Autodesk Inc., USA
  6. Duffie, J.A., Beckman, W.A. (1980). Solar engineering of thermal processes, John Wiley & Sons, NY.
  7. Jeong, M., Lee, H.C., Hwang, I.J. (2011). Performance analysis of degree of superheat of a natural gas liquefaction, 2011. KSME Spring Conference, 68-73 [in Korean].
  8. Kim, B.M. (1999). Corrosion of the equipment and its protection in refining and petrochemical plant, Corrosion and Protection, 1(1), 24-31 [in Korean].
  9. Kim, S.Y. (2013). A study for behavior of pipe-rack structures, Master's thesis, Sejong University, Korea [in Korean].
  10. Kim, S.Y., Lee, J.H., Lee, J.J. (2014). A study for the behavior of a pipe-rack structure with changes in environmental conditions, 2014 KSMI Spring Conference, Korea [in Korean].
  11. Kreith, F., Kreioder, J.F. (1978). Principles of solar engineering, Macmillan Company, NY.
  12. PIP STC01015, Structural design criteria, Process Industry Practices (PIP), http://www.pip.org/practices/practices.asp.
  13. SAES. (2003). Saudi aramco engineering standards (SAES), Saudi Aramco, Dhahran, Saudi Arabia.