DOI QR코드

DOI QR Code

목표 탄소배출량 저감을 고려한 콘크리트 구조물의 설계 절차

Design Approach of Concrete Structures Considering the Targeted CO2 Reduction

  • 정연백 (경기대학교 일반대학원 건축공학과) ;
  • 양근혁 (경기대학교 플랜트.건축공학과)
  • Jung, Yeon-Back (Department of Architectural Engineering, Kyonggi University Graduate School) ;
  • Yang, Keun-Hyeok (Department of Plant.Architectural Engineering, Kyonggi University)
  • 투고 : 2015.06.16
  • 심사 : 2015.06.26
  • 발행 : 2015.06.30

초록

본 연구에서는 $CO_2$ 배출 저감을 위한 저탄소 콘크리트 구조물 설계 절차를 제시하였다. 전과정 $CO_2$ 평가에 기반한 저탄소 콘크리트 구조물 설계 절차는 ISO 13315-2에서 요구하는 시스템 경계를 이용하였으며 구조물의 전과정 평가를 수행하기 위한 전과정 목록(life-cycle inventory, LCI)은 기본적으로 국가에서 구축한 LCI 데이터베이스 정보망을 이용하였다. 본 연구에서 제시한 절차에 따라 전단벽 콘크리트 구조물을 대상으로 전과정 $CO_2$ 평가에 대한 사례분석을 수행하였다. 기둥부재의 경우 GGBS 25% 치환 시 재료단계, 해체 및 파쇄단계, 운송단계에서 $CO_2$ 발생량 및 탄산화에 의한 $CO_2$ 포집량은 모두 감소하는 것으로 나타났으며 OPC 대비 약 26% 감소하는 것으로 나타났다. 기둥, 벽체, 보 및 슬래브 전체의 경우 GGBS 25% 치환에 따라 전과정 $CO_2$ 발생량이 약 22% 저감하는 것으로 나타났다.

The objective of this study is to present the design approach of low $CO_2$ concrete structures for reduction of $CO_2$ emissions. The design approach was implemented considering the system boundary for each processing presented in the ISO 13315-2. As for life-cycle inventory(LCI) for $CO_2$ assessment of concrete structures, data provided from domestic LCI DB was used. Based on the process presented in this study, case studies on the life-cycle $CO_2$ assessment of shear wall concrete structure was conducted. As substitution level of GGBS is 25%, the amount of $CO_2$ emissions and $CO_2$ uptake by concrete carbonation was decreased in the material, demolition and crushing, and transport phase. The amount of $CO_2$ emissions of column and total member was decreased by 26% and 22% respectively, compared to that of OPC.

키워드

참고문헌

  1. Han, S.W. (2011). A Study on Carbon Dioxide Emission of Input Resources according to Construction Method in Construction Phase, Master Dissertation, University of Seoul, 79 [in Korean].
  2. IgCC Public Comment Hearing Committee. (2012). International Green Construction Code, International Code Council, INC.
  3. ISO/DIS 13315-2. (2013). Environmental Management for Concrete and Concrete Structures-Part 2: System Boundary and Inventory Data, International Organization for Standardization, Geneva, Switzerland.
  4. Jung, Y.B., Yang, K.H. (2015). Mixture-proportioning model for low-$CO_2$ concrete considering the type and addition level of supplementary cementitious materials, Journal of the Korea Concrete Institute, Accepted [in Korean].
  5. Lee, H.Y., Shin, Y.A., Choi, S.W., Park, H.S. (2013). Carbon Dioxide Emissions Evaluation for Reinforced Concrete Columns Based on the Optimal Structural Design, Journal of Architectural Institute of Korea, 29(8), 45-52 [in Korean].
  6. Lee, S.H, Kim, S.K. (2011). $CO_2$ reduction in the Cement Industry, Concrete and Environment, Kimoondang, Seoul, 16-30 [in Korean].
  7. Yang, K.H., Moon, J.H. (2012). Design of Supplementary Cementitious Materials and Unit Content of Binder for Reducing $CO_2$ Emission of Concrete, Journal of the Korea Concrete Institute, 24(5), 597-604 [in Korean]. https://doi.org/10.4334/JKCI.2012.24.5.597
  8. Yang, K.H., Seo, E.A., Tae, S.H. (2014). Carbonation and $CO_2$ Uptake of Concrete, Environmental Impact Assessment Review, 46, 43-52. https://doi.org/10.1016/j.eiar.2014.01.004

피인용 문헌

  1. Long-Term Durability Estimation of Cementless Concrete Based on Alkali Activated Slag vol.4, pp.2, 2016, https://doi.org/10.14190/JRCR.2016.4.2.149