DOI QR코드

DOI QR Code

Direct Growth of Graphene on Insulating Substrate by Laminated (Au/Ni) Catalyst Layer

  • Ko, Yong Hun (Department of Physics, Sungkyunkwan University) ;
  • Kim, Yooseok (Advanced Nano-Surface Research Group, Korea Basic Science Institute (KBSI)) ;
  • Jung, Daesung (Department of Energy Science, Sungkyunkwan University) ;
  • Park, Seung Ho (Department of Physics, Sungkyunkwan University) ;
  • Kim, Ji Sun (Department of Physics, Sungkyunkwan University) ;
  • Shim, Jini (Department of Physics, Sungkyunkwan University) ;
  • Yun, Hyeju (Department of Physics, Sungkyunkwan University) ;
  • Song, Wooseok (Thin Film Materials Laboratory, Korea Research Institute of Chemical Technology) ;
  • Park, Chong-Yun (Department of Physics, Sungkyunkwan University)
  • Received : 2015.07.28
  • Accepted : 2015.07.29
  • Published : 2015.07.30

Abstract

A direct growth method of graphene on insulating substrate without catalyst etching and transfer process was developed using Au/Ni/a-C catalyst system. During the growth process, behavior of the Au/Ni catalyst was investigated using EDX, XPS, SEM, and Raman spectroscopy. The Au/Ni catalyst layer was evaporated during growth process of graphene. The graphene film was composed mono-layer flakes. The transmittance of the graphene film was ~80.6%.

Keywords

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  2. A. K. Geim, and K. S. Novoselov, Nature Mater., 6, 183 (2007). https://doi.org/10.1038/nmat1849
  3. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett., 9, 30 (2008).
  4. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science, 324, 1312 (2009). https://doi.org/10.1126/science.1171245
  5. M. G. Rybin, A. S. Pozharov, and Elena D. Obraztsova, Phys. Status Solidi C, 7, 2785 (2010). https://doi.org/10.1002/pssc.201000241
  6. W. Song, C Jeon , S. Y. Kim, Y Kim, S. H Kim, Su-Il Lee, D. S. Jung, M. W. Jung, K. S. An, and C. -Y. Park, Carbon, 68, 87 (2014). https://doi.org/10.1016/j.carbon.2013.10.039
  7. T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, and D. Hobara, Appl. Phys. Lett., 102, 023112 (2011).
  8. K. Yan, H. Peng, Y. Zhou, H. Li, and Z. Liu, Nano Lett., 11, 1106 (2011). https://doi.org/10.1021/nl104000b
  9. Q. Sun, D. H. Kim, S. S. Park, N. Y. Lee, Y. Zhang, J. H. Lee, K. Cho, and J. H. Cho, Adv. Meter., 26, 4735 (2014). https://doi.org/10.1002/adma.201400918
  10. E. Shi, H. Li, L. Yang, J. Hou, Y. Li, L. Li, A. Cao, and Y. Fang, Adv. Mater., 27, 682 (2015). https://doi.org/10.1002/adma.201403722
  11. H. O. Choi, D. W. Kim, S. J. Kim, S. B .Yang, and H.-T. Jung, Adv. Mater., 26, 4575 (2014). https://doi.org/10.1002/adma.201306234
  12. H. Lv, H. Wu, K. Xiao, W. Zhu, H. Xu, Z. Zhang, and H. Qian, Appl. Phys. Lett., 102, 183107 (2013). https://doi.org/10.1063/1.4804288
  13. Z. Liu, A. A. Bol, and W. Haensch, Nano Lett., 11, 523 (2011). https://doi.org/10.1021/nl1033842
  14. J. -Y. Kim, J. Lee, W. H. Lee, I. N. Kholmanov, J. W. Suk, T. Y. Kim, Y. Hao, H. Chou, D. Akinwande, and R. S. Ruoff, ACS Nano, 8, 269 (2014). https://doi.org/10.1021/nn406058g
  15. J. Park, W. H. Lee, S. Huh, S. H. Sim, S. B. Kim, K. Cho, B. H. Hong, and K. S. Kim, J. Phys. Chem. Lett., 2, 841 (2011). https://doi.org/10.1021/jz200265w
  16. X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L. Peng, and C. A. Richter, 5, 9144 (2011). https://doi.org/10.1021/nn203377t
  17. M. Her, R. Beams, and L. Novotny, Phys. Lett. A, 377, 1455 (2013). https://doi.org/10.1016/j.physleta.2013.04.015
  18. W. Jung, D. Kim, M. Lee, S. Kim, J. -H. Kim, and C. -S. Han, Adv. Mater., 26, 6394 (2014). https://doi.org/10.1002/adma.201400773
  19. H. H. Kim, Y. Chung, E. Lee, S. K. Lee, and K. Cho, Adv. Mater, 26, 3213 (2014). https://doi.org/10.1002/adma.201305940
  20. K. Banno, M. Mizuno, K. Fujita, T. Kubo, M. Miyoshi, T. Egawa, and T. Soga, 103, 082112 (2013). https://doi.org/10.1063/1.4818342
  21. T. Ikuta, K. Gumi, Y. Ohno, K. Maehashi, K. Inoue, and K. Matsumoto, Material Research Express, 1, 025028 (2014). https://doi.org/10.1088/2053-1591/1/2/025028
  22. X. Liu, T. Lin, M. Zhou, H. Bi, H. Cui, D. Wan, F. Huang, and J. Lin, Carbon, 71, 20 (2014). https://doi.org/10.1016/j.carbon.2013.12.064
  23. Z. Peng, Z. Yan, Z. Sun, and J. M. Tour, ACS Nano, 5, 8241 (2011). https://doi.org/10.1021/nn202923y
  24. Z. Yan, Z. Peng, Z. Sun, J. Yao, Y. Zhu, Z. Liu, P. M. Ajayan, and J. M. Tour, ACS Nano, 5, 8187 (2011). https://doi.org/10.1021/nn202829y
  25. A. Delamoreanu, C. Robot, C. Vallee, and A. Zenasni, Carbon, 66, 48 (2014). https://doi.org/10.1016/j.carbon.2013.08.037
  26. Z. Yang, D. J. Lichtenwalner, A. S. Morris, J. Krim, and A. I. Kingon, IEEE Journals & Magazines, 18, 287 (2009).
  27. M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, Nano Lett., 10, 751 (2010). https://doi.org/10.1021/nl904286r
  28. L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, Phys. Report, 473, 51 (2009). https://doi.org/10.1016/j.physrep.2009.02.003
  29. L. Zhao, N. Heinig, and K. T. Leung, J. Phys. Chem. C, 116, 12322 (2012). https://doi.org/10.1021/jp302336k