DOI QR코드

DOI QR Code

Direct Comparison of Optical Properties from Graphene Oxide Quantum Dots and Graphene Oxide

  • Jang, Min-Ho (Department of Physics and Graphene Research Center of KI for the NanoCentury, Korea Advanced Institute of Science and Technology) ;
  • Ha, Hyun Dong (Department of Chemical and Biomolecular Engineering and Institute for the BioCentury, Korea Advanced Institute of Science and Technology) ;
  • Seo, Tae Seok (Department of Chemical and Biomolecular Engineering and Institute for the BioCentury, Korea Advanced Institute of Science and Technology) ;
  • Cho, Yong-Hoon (Department of Physics and Graphene Research Center of KI for the NanoCentury, Korea Advanced Institute of Science and Technology)
  • Received : 2015.07.22
  • Accepted : 2015.07.29
  • Published : 2015.07.30

Abstract

The graphene oxide (GO) and graphene oxide quantum dots (GOQDs), which have gained research interest as new types of light-emitting materials, were synthesized by the modified Hummers method for oxidation of graphite flake and graphite nanoparticle. The optical properties of GO and GOQDs have been compared by mean of photoluminescence (PL), PL excitation (PLE), UV-vis absorbance, and time-resolved PL. The GO have an absorption peak at 229 nm and shoulder part at 310 nm, whereas the GOQDs show broad absorption with a gradual change up without any absorption peaks. The PL emission of GOQDs and GO showed the green color at 520 nm and the red color at 690 nm, respectively. The red emission of GO showed faster PL decay time than the green emission of GOQDs. In particular, the temporal PL profile of the GO showed redshift from 560 nm to 660 nm after the pump event.

Keywords

References

  1. A. K. Geim, Science 324, 1530 (2009). https://doi.org/10.1126/science.1158877
  2. T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, ACS Nano 3, 3963 (2009). https://doi.org/10.1021/nn9012753
  3. D. Pan, J. Zhang, Z. Li, and M. Wu, Adv. Mater. 22, 734 (2010). https://doi.org/10.1002/adma.200902825
  4. J. Shen, Y. Zhu, X. Yang, and C. Li, Chem. Commun. 48, 3686 (2012). https://doi.org/10.1039/c2cc00110a
  5. H. Sun, L. Wu, W. Wei, and X. Qu, Materials Today 16, 433 (2013). https://doi.org/10.1016/j.mattod.2013.10.020
  6. J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. R. Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, Nano Lett. 12, 844 (2012). https://doi.org/10.1021/nl2038979
  7. S. Kim, S. W. Hwang, M. K. Kim, D. Y. Shin, D. H. Shin, C. O. Kim, S. B. Yang, J. H. Park, E. Hwang, S. H. Choi, G. Ko, S. H. Sim, C. Sone, H. J. Choi, S. Bae, and B. H. Hong, ACS Nano 6, 8203 (2012). https://doi.org/10.1021/nn302878r
  8. S. H. Song, M.-H. Jang, J. Chung, S. H. Jin, B. H. Kim, S.-H. Hur, S. Yoo, Y.-H. Cho, and S. Jeon, Adv. Optical Mater. 2, 1016 (2014). https://doi.org/10.1002/adom.201400184
  9. F. Liu, M.-H. Jang, H. D. Ha, J.-H. Kim, Y.-H. Cho, and T. S. Seo, Adv. Mater. 25, 3657 (2013). https://doi.org/10.1002/adma.201300233
  10. M.-H. Jang, H. D. Ha, E.-S. Lee, F. Liu, Y.-H. Kim, T. S. Seo, and Y.-H. Cho, Small 2015, DOI: 10.1002/smll.201500206.
  11. S. Umrao, M.-H. Jang, J.-H. Oh, G. Kim, S. Sahoo, Y.-H. Cho, A. Srivastva, and I.-K. Oh, Carbon 81, 514 (2015). https://doi.org/10.1016/j.carbon.2014.09.084
  12. F. Liu, and T. S. Seo, Adv. Funct. Mater. 20, 1930 (2010). https://doi.org/10.1002/adfm.201000287
  13. H. D. Ha, M.-H. Jang, F. Liu, Y.-H. Cho, and T. S. Seo, Carbon 81, 367 (2015). https://doi.org/10.1016/j.carbon.2014.09.069
  14. K. F. Mak, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 106, 046401 (2011). https://doi.org/10.1103/PhysRevLett.106.046401
  15. D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, Nat. Nanotech. 3, 101 (2008). https://doi.org/10.1038/nnano.2007.451
  16. U. Lange, T. Hirsch, V. M. Mirsky, and O. S. Wolfbeis, Electrochimica Acta 56, 3707 (2011). https://doi.org/10.1016/j.electacta.2010.10.078
  17. C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, Angew. Chem. Int. Ed. 51, 6662 (2012). https://doi.org/10.1002/anie.201200474

Cited by

  1. Structural, electrical, and acoustical properties of graphene oxide films for acoustoelectronic applications vol.214, pp.8, 2017, https://doi.org/10.1002/pssa.201600757
  2. -based charge-trapped performance by graphene oxide quantum dots pp.1793-7213, 2018, https://doi.org/10.1142/S1793604718500935