DOI QR코드

DOI QR Code

Quantitative Evaluation on Photocatalytic Activity of Anatase TiO2 Nanocrystals in Aqueous Solution

  • Jeon, Byungwook (Department of Chemistry and Department of Energy Systems Research, Ajou University) ;
  • Kim, Yu Kwon (Department of Chemistry and Department of Energy Systems Research, Ajou University)
  • Received : 2015.07.20
  • Accepted : 2015.07.29
  • Published : 2015.07.30

Abstract

Quantitative evaluation of photocatalytic activity of oxide nanoparticles in aqueous solution is quite challenging in that the kinetic reaction rate is determined by a complicated interplay among various limiting factors such as light scattering and absorption, diffusion and adsorption of reactants in condensed liquid phase, photoexcited charge separation and recombination rate, and the exact nature of active sites determined by detailed morphology and crystallinity of nanocrystals. Here, we present our simple experimental results showing that the kinetic regime of a typical photocatalytic degradation experiment over UV-irradiated $TiO_2$ nanoparticles in aqueous solution is in that dominated by the photoactivity of $TiO_2$ and its concentration. This result lays a firm ground of using the measured kinetic reaction rate in evaluating photocatalytic efficiency of oxide nanocrystals under evaluation.

Keywords

References

  1. M. Pelaez, et al., Appl. Catal. B 125, 331 (2012). https://doi.org/10.1016/j.apcatb.2012.05.036
  2. K. Nakata, A. Fujishima, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13, 169 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.06.001
  3. H. Park, Y. Park, W. Kim, W. Choi, Journal of Photochemistry and Photobiology C: Photochemistry Reviews 15, 1 (2013). https://doi.org/10.1016/j.jphotochemrev.2012.10.001
  4. J. Su, X. Zou, J.-S. Chen, RSC Adv. 4, 13979 (2014). https://doi.org/10.1039/c3ra47757f
  5. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Appl. Catal. B 31, 145 (2001). https://doi.org/10.1016/S0926-3373(00)00276-9
  6. H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Appl. Catal. B 39, 75 (2002). https://doi.org/10.1016/S0926-3373(02)00078-4
  7. C.-H. Wu, J.-M. Chern, Ind. Eng. Chem. Res. 45, 6450 (2006). https://doi.org/10.1021/ie0602759
  8. G.M. Madhu, M.A. Lourdu Antony Raj, K. Vasantha Kumar Pai, Journal of Environmental Biology 30, 259 (2009).
  9. S. Chin, E. Park, M. Kim, J. Jurng, Powder Technology 201, 171 (2010). https://doi.org/10.1016/j.powtec.2010.03.034
  10. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, Renewable Sustainable Energy Rev. 11, 401 (2007). https://doi.org/10.1016/j.rser.2005.01.009
  11. A. Kudo, International Journal of Hydrogen Energy 32, 2673 (2007). https://doi.org/10.1016/j.ijhydene.2006.09.010
  12. A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63, 515 (2008). https://doi.org/10.1016/j.surfrep.2008.10.001
  13. A. Kudo, Y. Miseki, Chem. Soc. Rev. 38, 253 (2009). https://doi.org/10.1039/B800489G
  14. K. Maeda, K. Domen, The Journal of Physical Chemistry Letters 1, 2655 (2010). https://doi.org/10.1021/jz1007966
  15. S. Ikeda, N. Sugiyama, S.-y. Murakami, H. Kominami, Y. Kera, H. Noguchi, K. Uosaki, T. Torimoto, B. Ohtani, Phys. Chem. Chem. Phys. 5, 778 (2003). https://doi.org/10.1039/b206594k
  16. D.C. Hurum, K.A. Gray, T. Rajh, M.C. Thurnauer, J. Phys. Chem. B 109, 977 (2004).
  17. M. D'Arienzo, J. Carbajo, A. Bahamonde, M. Crippa, S. Polizzi, R. Scotti, L. Wahba, F. Morazzoni, J. Am. Chem. Soc. 133, 17652 (2011). https://doi.org/10.1021/ja204838s
  18. X. Yu, B. Kim, Y.K. Kim, ACS Catal. 3, 2479 (2013). https://doi.org/10.1021/cs4005776
  19. X. Yu, B. Jeon, Y.K. Kim, ACS Catal. 5, 3316 (2015). https://doi.org/10.1021/cs5020942
  20. X. Zhao, W. Jin, J. Cai, J. Ye, Z. Li, Y. Ma, J. Xie, L. Qi, Adv. Funct. Mater. 21, 3554 (2011). https://doi.org/10.1002/adfm.201100629
  21. K. Hayashi, M. Nakamura, Y. Makita, R. Fujiwara, T. Kori, K. Ishimura, Mater. Lett. 65, 3037 (2011). https://doi.org/10.1016/j.matlet.2011.06.044
  22. S. Auvinen, M. Alatalo, H. Haario, J.-P. Jalava, R.-J. Lamminmaki, J. Phys. Chem. C 115, 8484 (2011). https://doi.org/10.1021/jp112114p
  23. L. Wang, L. Zang, J. Zhao, C. Wang, Chem. Commun. 48, 11736 (2012). https://doi.org/10.1039/c2cc36005e
  24. X. Liu, H. Zhang, X. Yao, T. An, P. Liu, Y. Wang, F. Peng, A. Carroll, H. Zhao, Nano Res. 5, 762 (2012). https://doi.org/10.1007/s12274-012-0259-5
  25. D. Wu, Z. Gao, F. Xu, J. Chang, S. Gao, K. Jiang, CrystEngComm 15, 516 (2013). https://doi.org/10.1039/C2CE26454D
  26. C. Deiana, M. Minella, G. Tabacchi, V. Maurino, E. Fois, G. Martra, Phys. Chem. Chem. Phys. 15, 307 (2013). https://doi.org/10.1039/C2CP42381B
  27. Q. Shi, Y. Li, E. Zhan, N. Ta, W. Shen, CrystEngComm 16, 3431 (2014). https://doi.org/10.1039/c3ce42580k
  28. J. Chen, B. Li, J. Zheng, S. Jia, J. Zhao, H. Jing, Z. Zhu, J. Phys. Chem. C 115, 7104 (2011). https://doi.org/10.1021/jp2004369
  29. Z. Sun, J.H. Kim, Y. Zhao, F. Bijarbooneh, V. Malgras, Y. Lee, Y.-M. Kang, S.X. Dou, J. Am. Chem. Soc. 133, 19314 (2011). https://doi.org/10.1021/ja208468d
  30. A.G. Kontos, M. Pelaez, V. Likodimos, N. Vaenas, D.D. Dionysiou, P. Falaras, Photochemical & Photobiological Sciences 10, 350 (2011). https://doi.org/10.1039/C0PP00159G
  31. C. Han, M. Pelaez, V. Likodimos, A.G. Kontos, P. Falaras, K. O'Shea, D.D. Dionysiou, Appl. Catal. B 107, 77 (2011). https://doi.org/10.1016/j.apcatb.2011.06.039
  32. I. Paramasivam, H. Jha, N. Liu, P. Schmuki, Small 8, 3073 (2012). https://doi.org/10.1002/smll.201200564
  33. J. Boucle, J. Ackermann, Polymer International 61, 355 (2012). https://doi.org/10.1002/pi.3157
  34. E.C. Landis, K.C. Phillips, E. Mazur, C.M. Friend, J. Appl. Phys. 112, 063108 (2012). https://doi.org/10.1063/1.4752276
  35. Y. Qu, X. Duan, Chem. Soc. Rev. 42, 2568 (2013). https://doi.org/10.1039/C2CS35355E
  36. J. Yu, J. Fan, K. Lv, Nanoscale 2, 2144 (2010). https://doi.org/10.1039/c0nr00427h
  37. Q. Xiang, K. Lv, J. Yu, Appl. Catal. B 96, 557 (2010). https://doi.org/10.1016/j.apcatb.2010.03.020
  38. Z. Wang, K. Lv, G. Wang, K. Deng, D. Tang, Appl. Catal. B 100, 378 (2010). https://doi.org/10.1016/j.apcatb.2010.08.014
  39. J. Zhang, M. Li, Z. Feng, J. Chen, C. Li, J. Phys. Chem. B 110, 927 (2006). https://doi.org/10.1021/jp0552473
  40. J. Strunk, W.C. Vining, A.T. Bell, J. Phys. Chem. C 114, 16937 (2010). https://doi.org/10.1021/jp100104d
  41. W. Wang, C. Lu, Y. Ni, M. Su, Z. Xu, Appl. Catal. B 127, 28 (2012). https://doi.org/10.1016/j.apcatb.2012.08.002
  42. T. Thompson, J. Yates, Jr., Top. Catal. 35, 197 (2005). https://doi.org/10.1007/s11244-005-3825-1
  43. C.P. Kumar, N.O. Gopal, T.C. Wang, M.-S. Wong, S.C. Ke, J. Phys. Chem. B 110, 5223 (2006). https://doi.org/10.1021/jp057053t
  44. X. Liu, S. Gao, H. Xu, Z. Lou, W. Wang, B. Huang, Y. Dai, Nanoscale 5, 1870 (2013). https://doi.org/10.1039/c2nr33563h
  45. H. Liu, H.T. Ma, X.Z. Li, W.Z. Li, M. Wu, X.H. Bao, Chemosphere 50, 39 (2003). https://doi.org/10.1016/S0045-6535(02)00486-1
  46. J. Cunningham, A.L. Penny, J. Phys. Chem. 78, 870 (1974). https://doi.org/10.1021/j100602a004
  47. G. Lu, A. Linsebigler, J.T. Yates, J. Phys. Chem. 98, 11733 (1994). https://doi.org/10.1021/j100096a017
  48. M. Bowker, R.A. Bennett, J. Phys. Condens. Matt. 21, 474224 (2009). https://doi.org/10.1088/0953-8984/21/47/474224
  49. M. Kong, Y. Li, X. Chen, T. Tian, P. Fang, F. Zheng, X. Zhao, J. Am. Chem. Soc. 133, 16414 (2011). https://doi.org/10.1021/ja207826q
  50. N. Murakami, Y. Kurihara, T. Tsubota, T. Ohno, J. Phys. Chem. C 113, 3062 (2009). https://doi.org/10.1021/jp809104t
  51. I. Lee, F. Delbecq, R. Morales, M.A. Albiter, F. Zaera, Nat Mater 8, 132 (2009). https://doi.org/10.1038/nmat2371
  52. C.-K. Tsung, J.N. Kuhn, W. Huang, C. Aliaga, L.-I. Hung, G.A. Somorjai, P. Yang, J. Am. Chem. Soc. 131, 5816 (2009). https://doi.org/10.1021/ja809936n
  53. C.-T. Dinh, T.-D. Nguyen, F. Kleitz, T.-O. Do, ACS Nano 3, 3737 (2009). https://doi.org/10.1021/nn900940p
  54. T. Froschl, et al., Chem. Soc. Rev. 41, 5313 (2012). https://doi.org/10.1039/c2cs35013k
  55. E. Lira, S. Wendt, P. Huo, J.O. Hansen, R. Streber, S. Porsgaard, Y. Wei, R. Bechstein, E. Laegsgaard, F. Besenbacher, J. Am. Chem. Soc. 133, 6529 (2011). https://doi.org/10.1021/ja200884w
  56. J. Yan, G. Wu, N. Guan, L. Li, Z. Li, X. Cao, Phys. Chem. Chem. Phys. 15, 10978 (2013). https://doi.org/10.1039/c3cp50927c
  57. Q. Zhu, Y. Peng, L. Lin, C.-M. Fan, G.-Q. Gao, R.-X. Wang, A.-W. Xu, J. Mater. Chem. A 2, 4429 (2014). https://doi.org/10.1039/c3ta14484d
  58. Y. Yan, M. Han, A. Konkin, T. Koppe, D. Wang, T. Andreu, G. Chen, U. Vetter, J.R. Morante, P. Schaaf, J. Mater. Chem. A 2, 12708 (2014). https://doi.org/10.1039/C4TA02192D
  59. L. Li, J. Yan, T. Wang, Z.-J. Zhao, J. Zhang, J. Gong, N. Guan, Nat Commun 6, 5881 (2015). https://doi.org/10.1038/ncomms6881