DOI QR코드

DOI QR Code

Fast Determination of Multiple-Reaction Intermediates for Long-Chain Dicarboxylic Acid Biotransformation by Gas Chromatography-Flame Ionization Detector

  • Cho, Yong-Han (Department of Bio and Fermentation Convergence Technology, Kookmin University) ;
  • Lee, Hye-Jin (Department of Bio and Fermentation Convergence Technology, Kookmin University) ;
  • Lee, Jung-Eun (Department of Bio and Fermentation Convergence Technology, Kookmin University) ;
  • Kim, Soo-Jung (Center for Food and Bioconvergence, Seoul National University) ;
  • Park, Kyungmoon (Department of Bio and Chemical Engineering, Hongik University) ;
  • Lee, Do Yup (Department of Bio and Fermentation Convergence Technology, Kookmin University) ;
  • Park, Yong-Cheol (Department of Bio and Fermentation Convergence Technology, Kookmin University)
  • Received : 2015.02.11
  • Accepted : 2015.02.15
  • Published : 2015.05.28

Abstract

For the analysis of multiple-reaction intermediates for long-chain dicarboxylic acid biotransformation, simple and reproducible methods of extraction and derivatization were developed on the basis of gas chromatography with flame ionization detector (GC-FID) instead of mass spectrometry. In the derivatization step, change of the ratio of pyridine to MSTFA from 1:3 to 9:1 resulted in higher peak intensity (p = 0.021) and reproducibility (0.6%CV) when analyzing 32 g/l ricinoleic acid (RA). Extraction of RA and ω-hydroxyundec-9-enoic acid with water containing 100 mM Tween 80 showed 90.4-99.9% relative extraction efficiency and 2-7%CV compared with those with hydrophobic ethyl acetate. In conclusion, reduction of the pyridine content and change of the extraction solvent to water with Tween 80 provided compatible derivatization and extraction methods to GC-FID-based analysis of longchain carboxylic acids.

Keywords

References

  1. Bland JM, Altman DG. 1996. Statistics notes: measurement error proportional to the mean. BMJ 313: 106. https://doi.org/10.1136/bmj.313.7049.106
  2. Dodds E D, McCoy MR, Rea LD, Kennish JM. 2005. Gas chromatographic quantification of fatty acid methyl esters: flame ionization detection vs. electron impact mass spectrometry. Lipids 40: 419-428. https://doi.org/10.1007/s11745-006-1399-8
  3. Fiehn O. 2006. Metabolite profiling in Arabidopsis. Methods Mol. Biol. 323: 439-447.
  4. Franzmann C, Wächter J, Dittmer N, Humpf H-U. 2010. Ricinoleic acid as a marker for ergot impurities in rye and rye products. J. Agric. Food Chem. 58: 4223-4229. https://doi.org/10.1021/jf1006903
  5. Hudson J, MacKenzie C, Joblin K. 1995. Conversion of oleic acid to 10-hydroxystearic acid by two species of ruminal bacteria. Appl. Microbiol. Biotechnol. 44: 1-6. https://doi.org/10.1007/BF00164472
  6. Jeon E-Y, Lee J-H, Yang K-M, Joo Y-C, Oh D-K, Park J-B. 2012. Bioprocess engineering to produce 10-hydroxystearic acid from oleic acid by recombinant Escherichia coli expressing the oleate hydratase gene of Stenotrophomonas maltophilia. Process Biochem. 47: 941-947. https://doi.org/10.1016/j.procbio.2012.03.002
  7. Joo Y-C, Seo E-S, Kim Y-S, Kim K-R, Park J-B, Oh D-K. 2012. Production of 10-hydroxystearic acid from oleic acid by whole cells of recombinant Escherichia coli containing oleate hydratase from Stenotrophomonas maltophilia. J. Biotechnol. 158: 17-23. https://doi.org/10.1016/j.jbiotec.2012.01.002
  8. Köckritz A, Martin A. 2011. Synthesis of azelaic acid from vegetable oil-based feedstocks. Eur. J. Lipid Sci. Technol. 113: 83-91. https://doi.org/10.1002/ejlt.201000117
  9. Kim K-R, Seo M-H, Park J-B, Oh D-K. 2014. Stereospecific production of 9R-hydroxy-10E, 12Z-octadecadienoic acid from linoleic acid by recombinant Escherichia coli cells expressing 9R-lipoxygenase from Nostoc sp. SAG 25.82. J. Mol. Catal. B Enzym. 104: 56-63. https://doi.org/10.1016/j.molcatb.2014.03.009
  10. Kim K, Kim S-K, Park Y-C, Seo J-H. 2014. Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli. Bioresour. Technol. 156: 170-175. https://doi.org/10.1016/j.biortech.2014.01.009
  11. Kim S, Lee DY, Wohlgemuth G, Park HS, Fiehn O, Kim KH. 2013. Evaluation and optimization of metabolome sample preparation methods for Saccharomyces cerevisiae. Anal. Chem. 85: 2169-2176. https://doi.org/10.1021/ac302881e
  12. Lee DY, Fiehn O. 2008. High quality metabolomic data for Chlamydomonas reinhardtii. Plant Methods 4: 7. https://doi.org/10.1186/1746-4811-4-7
  13. Lee SH, Oh HM, Jo BH, Lee SA, Shin SY, Kim HS, et al. 2014. Higher biomass productivity of microalgae in an attached growth system, using wastewater. J. Microbiol. Biotechnol. 24: 1566-1573. https://doi.org/10.4014/jmb.1406.06057
  14. Lee Y-A, Jeon E-Y, Lee S-M, Bornscheuer UT, Park J-B. 2014. Engineering the substrate-binding domain of an esterase enhances its hydrolytic activity toward fatty acid esters. Process Biochem. 49: 2101-2106. https://doi.org/10.1016/j.procbio.2014.09.019
  15. Matuszewski B, Constanzer M, Chavez-Eng C. 1998. Matrix effect in quantitative LC/MS/MS analyses of biological fluids: a method for determination of finasteride in human plasma at picogram per milliliter concentrations. Anal. Chem. 70: 882-889. https://doi.org/10.1021/ac971078+
  16. Shin MH, Lee DY, Liu K-H, Fiehn O, Kim KH. 2010. Evaluation of sampling and extraction methodologies for the global metabolic profiling of Saccharophagus degradans. Anal. Chem. 82: 6660-6666. https://doi.org/10.1021/ac1012656
  17. Song JW, Jeon EY, Song DH, Jang HY, Bornscheuer UT, Oh DK, Park JB. 2013. Multistep enzymatic synthesis of longchain α, ω-dicarboxylic and ω-hydroxycarboxylic acids from renewable fatty acids and plant oils. Angew. Chem. Int. Ed. Engl. 52: 2534-2537. https://doi.org/10.1002/anie.201209187
  18. Souza KS, Schwan RF, Dias DR. 2014. Lipid and citric acid production by wild yeasts grown in glycerol. J. Microbiol. Biotechnol. 24: 497-506. https://doi.org/10.4014/jmb.1310.10084
  19. Zhang F, Huang C, Xu T. 2009. Production of sebacic acid using two-phase bipolar membrane electrodialysis. Ind. Eng. Chem. Res. 48: 7482-7488. https://doi.org/10.1021/ie900485k

Cited by

  1. Effect of PelB signal sequences on Pfe1 expression and ω-hydroxyundec-9-enoic acid biotransformation in recombinant Escherichia coli vol.102, pp.17, 2018, https://doi.org/10.1007/s00253-018-9139-6
  2. Development of mazF-based markerless genome editing system and metabolic pathway engineering in Candida tropicalis for producing long-chain dicarboxylic acids vol.45, pp.11, 2018, https://doi.org/10.1007/s10295-018-2074-9