DOI QR코드

DOI QR Code

웹 환경에 적합한 보관수명 기반 캐시 교체정책

Shelf-Life Time Based Cache Replacement Policy Suitable for Web Environment

  • Han, Sungmin (Dept. of Computer Science & Engineering, Korea National Defense University) ;
  • Park, Heungsoon (Dept. of Computer Science & Engineering, Korea National Defense University) ;
  • Kwon, Taewook (Dept. of Computer Science & Engineering, Korea National Defense University)
  • 투고 : 2015.03.23
  • 심사 : 2015.06.04
  • 발행 : 2015.06.30

초록

오랜기간 컴퓨터 분야의 연구주제였던 캐시 메커니즘은 네트워크 영역에서 웹 캐시로 응용되었다. 응답시간 감소, 네트워크 자원 절약 등의 다양한 이점을 갖는 웹 캐시는 교체정책에 의해 성능이 좌우되므로, 보다 나은 교체정책의 설계를 위해 웹 캐시가 운용되는 환경에 대한 분석과 고찰이 필수적이다. 따라서 과거에 비해 급속도로 다변화된 현재 웹 환경에서는 그러한 변화를 반영할 수 있는 교체정책이 요구된다. 따라서 본 논문에서는 현재 웹 환경의 특성을 규정하고, 이에 적합한 캐시 교체정책을 설계하고 평가한다.

Cache mechanism, which has been a research subject for a significant period of time in computer science, has become realized in the form of web caching in network practice. Web caching has various advantages, such as saving of network resources and response time reduction, depends its performance on cache replacement policy, therefore, analysis and consideration of the environment in which a web cache operates is essential for designing better replacement policies. Thus, in the current web environment where is rapidly changing relative to the past, a new cache replacement policy is necessary to reflect those changes. In this paper we stipulate some characteristics of the web at present, propose a new cache replacement policy, and evaluate it.

키워드

참고문헌

  1. P. J. Denning. "The locality principle," Commun. ACM, vol. 48, no. 7, pp. 19-24, Jul. 2005. https://doi.org/10.1145/1064830.1064847
  2. B. D. Davison, "A web caching primer," IEEE Internet Computing, vol. 5, no. 4, pp. 38-45, 2001. https://doi.org/10.1109/4236.939449
  3. S. Podling and L. Boszormenyi, "A survey of web cache replacement strategies," ACM Computing Surveys(CSUR), vol. 35, no. 4, pp. 374-398, 2003. https://doi.org/10.1145/954339.954341
  4. C. Aggarwal, J. L. Wolf, and P. S. Yu, "Caching on the world wide web," IEEE Trans. Knowledge and Data Eng., vol. 11, no. 1, pp. 94-107, 1999. https://doi.org/10.1109/69.755618
  5. S. Jin and A. Bestavros, "GreedyDual* Web caching algorithm: exploiting the two sources of temporal locality in Web request streams," J. Comput. Commun., vol. 24, no. 2, pp. 174-183, 2001. https://doi.org/10.1016/S0140-3664(00)00312-1
  6. J. Chen and L. Subramanian, "Interactive web caching for slow or intermittent networks," in Proc. 4th Annu. Symp. Comput. for Development (ACM DEV-4 '13), no. 5, 2013.
  7. Y. Li, H. Xie, Y. Wen, and Z. Zhang, "Coordinating in-network caching in contentcentric networks: model and analysis," IEEE ICDCS, pp. 62-72, Philadelphia, Jul. 2013.
  8. T. o'Reilly, What is web 2.0, O'Reilly Media, Inc., 2009.
  9. Cisco, Cisco visual networking index: Forecast and methodology, 2013-2018," Retrieved Nov., 2, 2015, from "http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html
  10. K. C. Laudon and J. P. Laudon, Essentials of management information systems, Upper Saddle River : Pearson, 2011.
  11. T. Karczewski, How long does your content last online?, Retrieved Nov., 10, 2014, from http://www.skyword.com/contentstandard/enter prise-marketing/how-long-does-your-content-last-online-data/
  12. M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, and S. Moon. "Analyzing the video popularity characteristics of large-scale user generated content system," IEEE/ACM Trans. Networking (TON), vol. 17, no. 5, pp. 1357-1370, 2009. https://doi.org/10.1109/TNET.2008.2011358
  13. T, Zaman, E. B. Fox, and E. T. Bradlow, "A bayesian approach for predicting the popularity of tweets," The annals of Applied Statistics, vol. 8, no. 3, pp. 1583-1611, 2014. https://doi.org/10.1214/14-AOAS741
  14. G. Szabo and B. A. Huberman, "Predicting the popularity of online content," Commun. ACM, vol. 53, no. 8, pp. 80-88, 2010. https://doi.org/10.1145/1787234.1787254
  15. C. Castillo, M. El-Haddad, J. Pfeffer, and M. Stempeck, "Characterizing the life cycle of online news stories using social media reactions," in Proc. 17th ACM Computer supported cooperative work & social computing, pp. 211-223, 2014.
  16. L. Breslau, P. cao. L. fan, G. Philips, and S. Shenker, "Web caching and zipf-like distributions : Evidence and implications," IEEE INFOCOM'99, vol. 1, 1999.

피인용 문헌

  1. MST 알고리즘 기반 콘텐츠 전송 네트워크에 관한 연구 vol.41, pp.2, 2015, https://doi.org/10.7840/kics.2016.41.2.178
  2. 분산 파일시스템의 소거 코딩 구현 및 성능 비교 vol.41, pp.11, 2015, https://doi.org/10.7840/kics.2016.41.11.1515