DOI QR코드

DOI QR Code

효율적인 서비스 기능 체이닝을 위한 최적의 플로우 분배 알고리즘

Optimal Flow Distribution Algorithm for Efficient Service Function Chaining

  • Kim, Myeongsu (Department of Electrical Engineering, Korea University) ;
  • Lee, Giwon (Department of Electrical Engineering, Korea University) ;
  • Choo, Sukjin (Department of Electrical Engineering, Korea University) ;
  • Pack, Sangheon (Department of Electrical Engineering, Korea University) ;
  • Kim, Younghwa (Electronics and Telecommunications Research Institute (ETRI))
  • 투고 : 2015.05.12
  • 심사 : 2015.06.02
  • Published : 2015.06.30

Abstract

서비스 기능 체이닝(SFC: Service function chaining)은 다수의 서비스 기능들을 순차적으로 구성하는 기술이다. 서비스 기능 체이닝에서는 확장성과 fault-tolerant를 위해 다수의 서비스 기능 인스턴스가 필요하며, 네트워크에 인입된 플로우는 다수의 서비스 기능 인스턴스로 적절하게 분배되어야 한다. 따라서 본 논문에서는 각 서비스 기능인스턴스들의 자원을 고려하면서 종단 간 지연시간(latency)을 최소화 할 수 있는 플로우 분배 문제를 정의한다. 또한 GT-ITM 토폴로지 생성 툴을 사용하여 보다 현실적인 네트워크 토폴로지 상에서 시뮬레이션을 수행하고, 그 결과 최적의 플로우 분배 기법이 전체 지연시간을 줄일 수 있음을 확인하였다.

Service function chaining(SFC) defines the creation of network services that consist of an ordered set of service function. A multiple service function instances should be deployed across networks for scalable and fault-tolerant SFC services. Therefore, an incoming flows should be distributed to multiple service function instances appropriately. In this paper, we formulate the flow distribution problem in SFC aiming at minimizing the end-to-end flow latency under resource constraints. Then, we evaluate its optimal solution in a realistic network topology generated by the GT-ITM topology generator. Simulation results reveal that the optimal solution can reduce the total flow latency significantly.

Keywords

References

  1. G. Lee, M. Kim, S. Choo, S. Pack, and Y. Kim, "Optimal flow distribution in service function chaining," in Proc. Int. Conf. Future Internet Technologies (CFI), Jun. 2015.
  2. P. Quinn and J. Guichard, "Service function chaining: Creating a service plane via network service headers," J. Computer, vol. 47, no. 11, pp. 38-44, Nov. 2014.
  3. W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini, F. Risso, D. Staessens, R. Steinert, and C. Meirosu, "Research directions in network service chaining," in Proc. IEEE SDN4FNS, pp. 1-7, Trento, Nov. 2013.
  4. S. Mehraghdam, M. Keller, and H. Karl, "Specifying and placing chains of virtual network functions," in Proc. IEEE CloudNet, pp. 7-13, Luxembourg, Oct. 2014.
  5. G. Lee, I. Jang, W. Kim, S. Joo, M. Kim, S. Pack, and C. Kang, "SDN-based middlebox management framework in integrated wired and wireless networks," J. KICS, vol. 39B, no. 6, pp. 379-386, Jun. 2014. https://doi.org/10.7840/kics.2014.39B.6.379
  6. J. Jo, S. Lee, J. Kong, and J. Kim, "A centralized network policy controller for SDN-based service overlay networking," J. KICS, vol. 38B, no. 4, pp. 266-278, Apr. 2013. https://doi.org/10.7840/kics.2013.38B.4.266
  7. H. Kim and H. Kim, "Control algorithm for virtual machine-level fairness in virtualized cloud data center," J. KICS, vol. 38C, no. 6, pp. 512-520, Jun. 2013. https://doi.org/10.7840/kics.2013.38C.6.512
  8. IETF Service Function Chaining (SFC) Working Group (WG), Retrieved May 1, 2015, from https://datatracker.ietf.org/wg/sfc/charter/
  9. J. Guichard and C. Pignataro, "Service function chaining (SFC) architecture," Internet-Draft draft-sfc-architecture-05, Feb. 2015.
  10. W. Liu, H. Li, O. Huang, M. Boucadair, N. Leymann, Z. Cao, Q. Sun, and C. Pham, Service function chaining (SFC) general use cases, Internet-Draft draft-liu-sfc-use-cases-08, Sept. 2014.
  11. S. Lee, S. Pack, M. Shin, and E. Paik, Resource management for dynamic service chain adaptation, internet-draft draft-lee-nfvrgresource- management-service-chain-00, Oct. 2014.
  12. A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand, T. Benson, A. Akella, and V. Sekar, Stratos: A networkaware orchestration layer for middleboxes in the cloud, arXiv preprint arXiv:1305.0209, 2013.
  13. K. Calvert and E. Zegura, GT internetwork topology models (GT-ITM), Retrieved May 1, 2015, from http://www.cc.gatech.edu/fac/Ellen.Zegura/gt-itm.
  14. G. Wang and T. S. E. Ng, "The impact of virtualization on network performance of amazone EC2 data center," in Proc. IEEE INFOCOM 2010, pp. 1-9, San Diego, CA, Mar. 2010.
  15. M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs, "Optical service chaining for network function virtualization," IEEE Commun. Mag., vol. 53, no. 4, pp. 152-158, Apr. 2015. https://doi.org/10.1109/MCOM.2015.7081089
  16. S. Mehraghdam, M. Keller, and H. karl, "Specifying and placing chains of virtual network functions," in Proc. IEEE Cloud Netw. (CloudNet), pp. 7-13, Luxembourg, Jun. 2014.
  17. M. Bagaa, T. Taleb, and A. Ksentini, "Service-aware network function placement for efficient traffic handling in carrier cloud," in Proc. IEEE Wirel. Commun. Netw. Conf. (WCNC) 2014, pp. 2402-2407, Istanbul, Apr. 2014.
  18. C. Pham, H. D. Tran, S. I. Moon, K. Thar, and C. S. Hong, "A general and practical consolidation framework in CloudNFV," in Proc. IEEE Int. Conf. Inf. Netw. (ICOIN) 2015, pp. 295-300, Cambodia, Jan. 2015.
  19. O. Heckmann, M. Piringer, J. Schmitt, and R. Steinmetz, "On realistic network topologies for simulation," in Proc. ACM SIGCOMM MoMeTools Workshop, pp. 28-32, Aug. 2003.
  20. B. Zhang, T. S. E. Ng, A. Nandi, R. Riedi, P. Druschel, and G. Wang, "Measurement-based analysis, modeling, and synthesis of the internet delay space," IEEE/ACM Trans. Netw., vol. 18, no. 1, pp. 229-242, Feb. 2010. https://doi.org/10.1109/TNET.2009.2024083