DOI QR코드

DOI QR Code

Mineralogical Characteristics of Marine Sediments Cores from Uleung Basin and Hupo Basin, East Sea

동해 울릉분지와 후포분지 해양 퇴적물 코어의 광물학적 특성

  • Lee, Su-Ji (Department of Geology, Kyungpook National University) ;
  • Kim, Chang-Hwan (Dokdo Research Center, East Sea Research Institute, KIOST) ;
  • Jun, Chang-Pyo (Department of Geology, Kyungpook National University) ;
  • Lee, Seong-Joo (Department of Geology, Kyungpook National University) ;
  • Kim, Yeongkyoo (Department of Geology, Kyungpook National University)
  • 이수지 (경북대학교 지질학과) ;
  • 김창환 (한국해양과학기술원 동해연구소 독도전문연구센터) ;
  • 전창표 (경북대학교 지질학과) ;
  • 이성주 (경북대학교 지질학과) ;
  • 김영규 (경북대학교 지질학과)
  • Received : 2015.03.11
  • Accepted : 2015.03.27
  • Published : 2015.03.31

Abstract

This study was carried out in order to investigate the mineralogical characteristics of the core sediments (03GHP-02 and HB13-2), obtained from the Ulleung Basin and Hupo Basin, Korea. The results on mineral compositions, clay mineral compositions, and the total contents and sequential extraction of different fractions of the phosphorus in core samples showed that those values are different in two cores and also at different depths. In both samples, mineral compositions were the same, composed mainly of quartz, microcline, albite, calcite, opal A, pyrite, and clay minerals (illite, chlorite, kaolinite, and smectite). However, the sample from Hupo Basin contains more opal A. Both samples, especially the ones from Hupo Basin contains more smectite than those reported from East Sea, indicating the influence of paleo-Hwangwei River and the Tertiary Formation of Korea Peninsula. For the samples from Uleung Basin, at 0.7-3.5 m range in depth, the low content of opal A and the low illite crystallinity index can be inferred to indicate the relatively cool climate, corresponding to the ice age. Also, the content of total phosphorus was low in those samples. It was reported that East Sea at that time was isolated from the neighboring seas due to the decrease of the sea level, and as a result, the influx of sediments was supposed to be little through the strait and rivers. For the samples from Hupo Basin, there is no significant changes in clay mineral composition and the distribution of phosphorus with increasing depth. This little change can be interpreted to indicate that the sediments comprising the core might be deposited in a relatively short period of time or deposited in sedimentary environment in which there's no significant changes in sediment supplies. The values of crystallinity index of clay minerals are high in those samples, indicating that it was relatively warm during that time. Although the increase of fluctuation pattern can be observed, showing that the climate of this period often changed, it is supposed that it was generally warm.

울릉분지와 후포분지의 퇴적물 코어 시료(각 분지에서 하나씩 03GHP-02와 HB13-2)를 대상으로 광물학적 연구를 수행하였다. 광물조성, 점토광물 성분, 그리고 총 인 성분 및 인의 연속추출법 연구 결과, 두 시료들은 각 값에 대하여 또한 깊이에 따라 어느 정도 차이가 있음을 보이고 있다. 두 시료 모두 광물 종에는 차이를 보이지 않았으며 주로 석영, 미사장성, 장석, 방해석, 오팔A, 황철석, 그리고 점토광물(일라이트, 녹니석, 카올리나이트, 스멕타이트)로 구성되어 있었다. 후포분지의 경우 울릉분지에 비하여 오팔A 함량이 훨씬 많은 것으로 나타났다. 두 시료 모두, 특히 후포분지 시료에서 기존에 동해에서 보고된 것보다 더 많은 스멕타이트가 동정되었는데 이는 고황하강의 영향과 한반도의 제3기 지층 암석에 영향을 받은 것으로 사료된다. 울릉분지 시료의 경우 약 0.7-3.5 m 깊이에 오팔A의 함량 감소 그리고 일라이트 결정도 지수도 낮게 나오며 이는 빙하시대의 추운 기후에 해당된다. 이 깊이의 시료에서는 인의 함량도 상대적으로 낮게 나오고 있다. 이는 이 기간 동안 동해는 해수면의 하강으로 외부 해역과 단절되었고 해협 및 하천을 통한 퇴적물의 유입도 적었기 때문으로 판단된다. 후포분지 시료의 경우 울릉분지에 비하여 깊이에 따른 점토광물 변화와 인의 성분 변화는 크게 관찰되지 않는다. 이러한 경향은 울릉분지에 비하여 비교적 짧은 기간에 퇴적되었거나 퇴적환경의 변화가 별로 없는 환경에서 퇴적되었기 때문으로 해석된다. 점토광물의 결정도 지수는 울릉분지에 비하여 약간 높아 퇴적되었을 당시 비교적 온난한 환경이었을 것으로 추측되며 인의 연구 결과로 미루어 볼 때 비록 어느 정도 변화는 있지만 또한 온난한 환경을 지시한다.

Keywords

References

  1. Berner, R.A. and Canfield, D.E. (1989) A new model of atmospheric oxygen over Phanerozoic time. American Journal of Science, 289, 333-361. https://doi.org/10.2475/ajs.289.4.333
  2. Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay on the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803-832. https://doi.org/10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
  3. Cha, H.J. (2002) Geochemistry of surface sediments and diagenetic redistribution of phosphorus in the southwestern East Sea. PhD Thesis. Seoul National University., Seoul, Korea.
  4. Cha, H.J., Lee, C.B., Kim, B.S., Choi, M.S., and Ruttenberg K.C. (2007) Early diagenetic redistribution and burial of phosphorus in the sediments of the southwestern East Sea (Japan Sea). Marine Geology, 216, 127-143.
  5. Chamley, H. (1989) Clay Sedimentology. Springer-Verlag Berlin-Heidelberg-New York, 623 pp.
  6. Cho, H.G., Kim, S.O., and Yi, H.I. (2012) Clay mineral distribution and characteristics in the southeastern Yellow Sea mud deposits. Journal of the Mineralogical Society of Korea, 25, 163-173 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2012.25.3.163
  7. Choi, J.Y. and Kim, S.Y. (1998) Distribution of clay minerals in the korean seas. Jour. Korean Earth Science Society, 19, 524-532 (in Korean with English abstract).
  8. Filippelli, G.M. and Delaney, M.L. (1996) Phosphorus geochemistry of equatorial Pacific sediments. Geochimica et Cosmochimica Acta, 60, 1479-1495. https://doi.org/10.1016/0016-7037(96)00042-7
  9. Han, S.J. (1995) Basin Structures and Past Changes in the East Sea, Korea (BASAPES-94) (First Year), Korea Ocean Research and Development Institute, BSPN 00259-808-5. 407p.
  10. Han, S.J., Huh, S., Bahk, J.J., Chun, J.H., Kim, S.H., Woo, H.J., Lee, H.J., Hong, G.H., Shin, D.H., and Yi, H.I. (1997) Paleoenvironmtnets near Ulleung and Dok Islands in the Ulleung Basin, East Sea of Korea. Ocean Research, 19, 71-90.
  11. Hansen, H.P. and Koroleff, F. (1999) Determination of nutrients. In: Grasshoff, K. Kremling, K., and Ehrhardt, M. (eds.) Methods of Seawater Analysis, (3rd. Ed.) Wiley-VCH Verlag GmbH, 117-181.
  12. Hong, G.H., Kim, S.H., Chung, C.S., Kang, D.J., Shin, D.H., Lee, H.J., and Han, S.J. (1997) $^{210}Pb$-derived sediment accumulation rates in the southwestern East Sea (Sea of Japan). Geo-marine Letters, 17, 126-137. https://doi.org/10.1007/s003670050017
  13. Horiuchi, K., Minoura, K., Hoshino, k., Oda, T., Nakamura, T., and Kawai, T. (2000) Paleoenvironmental history of Lake Baikal during the last 23000 years. Palaeogeography Palaeoclimatology Palaeoecolgy, 157, 95-108. https://doi.org/10.1016/S0031-0182(99)00156-X
  14. Irino, T. and Tada, R. (2003) High-resolution reconstruction of variation in aeolian dust (Kosa) deposition at ODP site 797, the Japan Sea, during the last 200 ka. Global and Planetary Change, 35, 143-156. https://doi.org/10.1016/S0921-8181(02)00135-2
  15. Jun, C.P., Kim, C.H., Kim, Y., and Lee, S.J. (2014) Reconstruction of the hupo basin using grain size and mineral analysis. Journal of the Mineralogical Society of Korea, 27, 159-168 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2014.27.3.159
  16. KIGAM (2009) Coastal geohazard factor analysis (Uljin area). Korea Institute of Geoscience and Mineral Resources, KIGAM, Daejeon, 279p.
  17. Kim, J.M., Kennett, J.P., Park, B.K., Kim, D.C., Kim, G.Y., and Roark, E.B. (2000) Paleoceanographic change during the last deglaciation, East Sea of Korea. Paleoceanography, 15, 254-266. https://doi.org/10.1029/1999PA000393
  18. Kim, J.H., Ryu, B.J., Cheong, T.J., Lee, Y.J., Park, M.H., Kim, I.S., and Chang, H.W. (2003) Geochemical study on the sediments in the western Ulleung Basin of the East Sea. International Symposium on Gas Hydrate, Qindao in China, p. 8-9.
  19. Kim, J.H., Park, M.H., Ryu, B.J., lee, Y.J., Oh, J.H., Cheong, T.J. and Chang, H.W. (2007) Origin of organic matter and geocheminal variation of upper quaternary sediments from the Ulleung Basin. Economic and Environmental Geology, 40, 605-622 (in Korean with English abstract).
  20. Kim, J.H., Park, M.H., Kong, G.S., Han, H.C., Cheong T.J., Choi, J.Y., Kim, J.H., Kang, M.H., Lee, C.W. and Oh, J.H. (2010) Geochemical results and implication of the organic matter in the holocene sediments from the hupo basin. Economic and Environmental Geology, 43, 1-12 (in Korean with English abstract).
  21. Kim, J.H., Kong, G.S., Ryu, J.S., and Park, M.H. (2014) Revisiting the origin of organic matter and depositional environment of sediment in the central Ulleung Basin, East Sea since the late Quaternary. Quaternary International, 344, 181-191. https://doi.org/10.1016/j.quaint.2014.07.022
  22. Lee, K.E., (2007) Surface water changes recorded in Late Quaternary marine sediments of the Ulleung Basin, East Sea (Japan Sea). Palaeogeography, Palaeoclimatology, Palaeoecology 247, 18-31. https://doi.org/10.1016/j.palaeo.2006.11.019
  23. Lee, Y.J., Cho, H.G., Kim, S.O., Ahn, S.J., and Choi, H. (2013) Sediment provenance of southwestern Chehu Island mud using principal component analysis. Journal of the Mineralogical Society of Korea, 26, 189-196 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2013.26.3.189
  24. Lim, D., Xu, Z., Choi, J., Kim, S., Kim, E., Kang, S., & Jung, H. (2011) Paleoceanographic changes in the Ulleung Basin, East (Japan) Sea, during the last 20,000 years: evidence from variations in element composition of core sediments. Progress in Oceanography, 88, 101-115.
  25. Oba, T., Kato, M., Kitazato, H., Koizumi, I., Omura, Al, Sakai, T. and Takayama, T. (1991) Paleoenvironmental changes in the Japan Sea during the last 85,000 years. Paleoceonography, 6, 499-518. https://doi.org/10.1029/91PA00560
  26. Park, M.H., Kim, I.S. and Shin, J.B. (2003) Characteristics of the late quaternary tephra layers in the east/japan sea and their new occurences in western ulleung basin sediments. Marine Geology, 202, 135-142. https://doi.org/10.1016/S0025-3227(03)00287-1
  27. Petschick, R. (2000) MacDiff 4.2. 5 manual available at http://www.geologie.Unifrankfurt.de/Staff/Homepages/Petschick/PDFs.MacDiff_Manual_E.pdf.
  28. Ruttenberg, K.C. (1992) Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnology and Oceanography, 37), 1460-1482. https://doi.org/10.4319/lo.1992.37.7.1460
  29. Son, J.K., Lee, T.S., and Yang, H.S. (1999) Phosphorus phases in the surface sediment of south sea. Korean Journal of Fisheries and Aquatic Sciences, 32, 680-687.
  30. Son, B.K., Kim, H.J., Ahn, G.O. (2009) Mineral composition of the sediment of ulleung basin, korea. Journal of the Mineralogical Society of Korea, 22, 115-127 (in Korean with English abstract).
  31. Tada, R. (1994) What controls the deposition of biosiliceous sediments in the Japan Sea?. Proceedings of the 29th International Geological Congress, Part C, 17-30.
  32. Um, I.K., Choi, S.M., and Shin, H.S. (2009) Characteristics of elements geochemistry in ulleung basin sediments during the late Quaternary. Journal of the Korean Society of Oceanography, 14, 69-79 (in Korean with English abstract).
  33. Um, I.K., Choi, M.S., Bahk, J.J., and Song, Y.H. (2013) Discrimination of sediment provenance using rare earth elements in the Ulleung Basin, East/Japan Sea. Marine Geology, 346, 208-219. https://doi.org/10.1016/j.margeo.2013.09.007
  34. Yoon, S.H. and Chough, S.K. (1993) Evolution of neogene sedimentary basins in the eastern continental margin of korea. Korean Journal of Petroleum Geology, 1, 15-27 (in Korean with English abstract).

Cited by

  1. 동해 울릉분지의 사면안정성 및 쇄설류 퇴적체의 발달 vol.50, pp.2, 2017, https://doi.org/10.9719/eeg.2017.50.2.129
  2. 동해 후포분지의 Pockmark 해저지형 특성 연구 vol.52, pp.6, 2019, https://doi.org/10.9719/eeg.2019.52.6.561
  3. 강릉-동해 연안 퇴적물의 점토광물에 관한 연구 vol.33, pp.3, 2015, https://doi.org/10.22807/kjmp.2020.33.3.175