참고문헌
- Aguiar, R.A., Savi, M.A. and Pacheco, Pedro M.C.L. (2010), "Experimental and numerical investigations of shape memory alloy helical springs", Smart Mater. Struct., 19(2), 025008. https://doi.org/10.1088/0964-1726/19/2/025008
- Arghavani, J., Auricchio, F., Naghdabadi, R. and Reali, A. (2011), "An improved, fully symmetric, finite-strain phenomenological constitutive model for shape memory alloys", Finite Elem. Anal. Des., 47(2), 166-174. https://doi.org/10.1016/j.finel.2010.09.001
- Attanasi, G., Auricchio, F. and Urbano, M. (2011), "Theoretical and experimental investigation on SMA superelastic springs", J. Mater. Eng. Perform., 20(4-5), 706-711. https://doi.org/10.1007/s11665-011-9831-5
- Auricchio, F., Boatti, E., et al. (2015), Chapter 11 - SMA Biomedical Applications. Shape Memory Alloy Engineering. L. L. Concilio. Boston, Butterworth-Heinemann: 307-341.
- Bazant, P. and Oh, B. (1986), "Efficient numerical integration on the surface of a sphere", ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift fur Angewandte Mathematik und Mechanik 66(1): 37-49. https://doi.org/10.1002/zamm.19860660108
- Brocca, M., Brinson, L.C. and Bazant, Z.P. (2002), "Three-dimensional constitutive model for shape memory alloys based on microplane model", J. Mech. Phys. Solids, 50(5), 1051-1077. https://doi.org/10.1016/S0022-5096(01)00112-0
- Buehler, W.J., Gilfrich, J.V. and Wiley, R.C. (1963), "Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi", J. Appl. Phys., 34(5), 1475-1477. https://doi.org/10.1063/1.1729603
- de Aguiar, R.A.A., de Castro Leao Neto, W.C., Savi, M.A. and Calas Lopes Pacheco, P.M. (2013), "Shape memory alloy helical springs performance: modeling and experimental analysis", Materials Science Forum, 758, 147-156. https://doi.org/10.4028/www.scientific.net/MSF.758.147
- Dong, Y., Boming, Z. and Jun, L. (2008), "A changeable aerofoil actuated by shape memory alloy springs", Mater. Sci. Eng., 485(1), 243-250. https://doi.org/10.1016/j.msea.2007.08.061
- Dumont, G. and Kuhl, C. (2005), "Finite element simulation for design optimisation of shape memory alloy spring actuators", Eng. Comput., 22(7), 835-848. https://doi.org/10.1108/02644400510619549
- Graesser, E. and Cozzarelli, F. (1994), "A proposed three-dimensional constitutive model for shape memory alloys", J. Intel. Mat. Syst. Str., 5(1), 78-89. https://doi.org/10.1177/1045389X9400500109
- Karamooz Ravari, M.R. and Kadkhodaei, M. (2014), "A computationally efficient modeling approach for predicting mechanical behavior of cellular lattice structures", J. Mater. Eng. Perform., 1-8.
- Karamooz Ravari, M.R., Kadkhodaei, M., Badrossamay, M. and Rezaei, R. (2014), "Numerical investigation on mechanical properties of cellular lattice structures fabricated by fused deposition modeling", Int. J. Mech. Sci., 88, 154-161. https://doi.org/10.1016/j.ijmecsci.2014.08.009
- Kauffman, G. and Mayo, I. (1997), "The story of nitinol: the serendipitous discovery of the memory metal and its applications", The Chemical Educator, 2(2), 1-21.
- Leukart, M. and Ramm, E. (2003), "A comparison of damage models formulated on different material scales", Comput. Mater. Sci., 28(3), 749-762. https://doi.org/10.1016/j.commatsci.2003.08.029
- Liang, C. and Rogers, C. (1992), "A multi-dimensional constitutive model for shape memory alloys", J. Eng. Math., 26(3), 429-443. https://doi.org/10.1007/BF00042744
- Machado, L.G. and Savi, M.A. (2003), "Medical applications of shape memory alloys", Brazilian J. Medical Bio. Res., 36, 683-691. https://doi.org/10.1590/S0100-879X2003000600001
- Mehrabi, R., Andani, M.T., Elahinia, M. and Kadkhodaei, M. (2014a), "Anisotropic behavior of superelastic NiTi shape memory alloys; an experimental investigation and constitutive modeling", Mech. Mater., 77, 110-124. https://doi.org/10.1016/j.mechmat.2014.07.006
- Mehrabi, R. and Kadkhodaei, M. (2013), "3D phenomenological constitutive modeling of shape memory alloys based on microplane theory", Smart Mater. Struct., 22(2), 025017. https://doi.org/10.1088/0964-1726/22/2/025017
- Mehrabi, R., Kadkhodaei, M., Taheri Andani, M. and Elahinia, M. (2014b), "Microplane modeling of shape memory alloy tubes under tension, torsion, and proportional tension-torsion loading", J. Intel. Mat. Syst. Str., 1045389X14522532.
- Mehrabi, R., Kadkhodaei, M. and Elahinia, M. (2014c), "Constitutive modeling of tension-torsion coupling and tension-compression asymmetry in NiTi shape memory alloys", Smart Mater. Struct., 23(7), 75021-75035. https://doi.org/10.1088/0964-1726/23/7/075021
- Mehrabi, R., Kadkhodaei, M. and Elahinia, M. (2014d), "A thermodynamically-consistent microplane model for shape memory alloys", Int. J. Solids Struct., 51(14), 2666-2675. https://doi.org/10.1016/j.ijsolstr.2014.03.039
- Mehrabi, R., Taheri Andani, M. Kadkhodaei, M. and Elahinia, M. (2015), "Experimental study of NiTi thin-walled tubes under uniaxial tension, torsion, proportional and non-proportional loadings", Exp. Mech., 55, 1151-1164. https://doi.org/10.1007/s11340-015-0016-2
- Menna, C., Auricchio, F., et al. (2015), Chapter 13 - Applications of Shape Memory Alloys in Structural Engineering. Shape Memory Alloy Engineering. L. L. Concilio. Boston, Butterworth-Heinemann: 369-403.
- Mehrabi, R., Taheri Andani, M. Kadkhodaei, M., and Elahinia, M. (2015), "Experimental study of NiTi thin-walled tubes under uniaxial tension, torsion, proportional and non-proportional loadings", Exp. Mech., 55, 1151-1164. https://doi.org/10.1007/s11340-015-0016-2
- Mirzaeifar, R., DesRoches, R. and Yavari, A. (2011), "A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs", Int. J. Solids Struct., 48(3), 611-624. https://doi.org/10.1016/j.ijsolstr.2010.10.026
- Mohd Jani, J., Leary, M., Subic, A. and Gibson, M.A. (2014), "A review of shape memory alloy research, applications and opportunities", Mater. Design, 56, 1078-1113. https://doi.org/10.1016/j.matdes.2013.11.084
- Nicholson, D.E., Padula II, S.A. and Noebe, R.D., Benafan, O. and Vaidyanathan, R. (2014), "Thermomechanical behavior of NiTiPdPt high temperature shape memory alloy springs", Smart Mater. Struct., 23(12), 125009. https://doi.org/10.1088/0964-1726/23/12/125009
- Panico, M. and Brinson, L. (2007), "A three-dimensional phenomenological model for martensite reorientation in shape memory alloys", J. Mech. Phys. Solids, 55(11), 2491-2511. https://doi.org/10.1016/j.jmps.2007.03.010
- Pecora, R. and Dimino, I. (2015), Chapter 10 - SMA for Aeronautics. Shape Memory Alloy Engineering. L. L. Concilio. Boston, Butterworth-Heinemann: 275-304.
- Popov, P. and Lagoudas, D.C. (2007), "A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite", Int. J. Plasticity, 23(10), 1679-1720. https://doi.org/10.1016/j.ijplas.2007.03.011
- Ravari, M.K., Kadkhodaei, M. and Ghaei, A. (2015), "A microplane constitutive model for shape memory alloys considering tension-compression asymmetry", Smart Mater. Struct., 24(7), 075016. https://doi.org/10.1088/0964-1726/24/7/075016
- Reese, S. and Christ, D. (2008), "Finite deformation pseudo-elasticity of shape memory alloys-Constitutive modelling and finite element implementation", Int. J. Plasticity, 24(3), 455-482. https://doi.org/10.1016/j.ijplas.2007.05.005
- Saleeb, A., Dhakal, B., Hosseini, M.S. and Padula II, S.A. (2013), "Large scale simulation of NiTi helical spring actuators under repeated thermomechanical cycles", Smart Mater. Struct., 22(9), 094006. https://doi.org/10.1088/0964-1726/22/9/094006
- Savi, M.A., Pacheco, P.M.C., Garcia, M.S., Aguiar, R.A., de Souza, L.F.G. and da Hora, R.B. (2015), "Nonlinear geometric influence on the mechanical behavior of shape memory alloy helical springs", Smart Mater. Struct., 24(3), 035012." https://doi.org/10.1088/0964-1726/24/3/035012
- Zhou, L., Zheng, L.J., Zhang, H.R. and Zhang, H. (2012), "Effect of oxygen on microstructure of Ni-43Ti-7Al alloy", Mater. Res. Innov., 16(2), 115-120. https://doi.org/10.1179/1433075X11Y.0000000043
피인용 문헌
- Modeling the Cyclic Shape Memory and Superelasticity of Selective Laser Melting Fabricated NiTi 2018, https://doi.org/10.1016/j.ijmecsci.2018.01.034
- Numerical implementation of the microplane constitutive model for shape memory alloys 2019, https://doi.org/10.1177/1464420717708486
- INVESTIGATION OF MECHANICAL BEHAVIOR OF NiTi STENT UNDER DIFFERENT LOADINGS vol.18, pp.06, 2018, https://doi.org/10.1142/S021951941850029X
- A numerical model based on Voronoi tessellation for the simulation of the mechanical response of porous shape memory alloys vol.53, pp.13, 2018, https://doi.org/10.1007/s11012-018-0883-6
- Numerical Simulation and Experimental Study of a Simplified Force-Displacement Relationship in Superelastic SMA Helical Springs vol.19, pp.1, 2019, https://doi.org/10.3390/s19010050
- Dynamic behavior of a seven century historical monument reinforced by shape memory alloy wires vol.23, pp.4, 2019, https://doi.org/10.12989/sss.2019.23.4.337
- A modified one-dimensional constitutive model of pseudoelastic SMAs and its application in simulating the force-deformation relationship of SMA helical springs vol.29, pp.11, 2015, https://doi.org/10.1088/1361-665x/abaac3
- Crawling-jumping synergic bioinspired robots harnessing electroactive bistable actuators by adjusting mechanical responses and forces vol.24, pp.None, 2021, https://doi.org/10.1016/j.apmt.2021.101091